Journal of Synthetic Crystals, Volume. 52, Issue 5, 901(2023)
Van der Waals Epitaxial GaN Thin Films on Polycrystalline Diamond Substrate
[1] [1] WEI L, KUO P K, THOMAS R L, et al. Thermal conductivity of isotopically modified single crystal diamond[J]. Physical Review Letters, 1993, 70(24): 3764-3767.
[2] [2] GRAY K J. Effective thermal conductivity of a diamond coated heat spreader[J]. Diamond and Related Materials, 2000, 9(2): 201-204.
[3] [3] WEBSTER R F, CHERNS D, KUBALL M, et al. Electron microscopy of gallium nitride growth on polycrystalline diamond[J]. Semiconductor Science and Technology, 2015, 30(11): 114007.
[4] [4] GRACIO J J, FAN Q H, MADALENO J C. Diamond growth by chemical vapour deposition[J]. Journal of Physics D: Applied Physics, 2010, 43(37): 374017.
[5] [5] WATSON I M. Metal organic vapour phase epitaxy of AlN, GaN, InN and their alloys: a key chemical technology for advanced device applications[J]. Coordination Chemistry Reviews, 2013, 257(13/14): 2120-2141.
[6] [6] DUSSAIGNE A, MALINVERNI M, MARTIN D, et al. GaN grown on (111) single crystal diamond substrate by molecular beam epitaxy[J]. Journal of Crystal Growth, 2009, 311(21): 4539-4542.
[7] [7] PLESKOV Y V. Electrochemistry of diamond: a review[J]. Russian Journal of Electrochemistry, 2002, 38(12): 1275-1291.
[8] [8] HIRAMA K, TANIYASU Y, KASU M. AlGaN/GaN high-electron mobility transistors with low thermal resistance grown on single-crystal diamond (111) substrates by metalorganic vapor-phase epitaxy[J]. Applied Physics Letters, 2011, 98(16): 162112.
[9] [9] ALOMARI M, DUSSAIGNE A, MARTIN D, et al. AlGaN/GaN HEMT on (111) single crystalline diamond[J]. Electronics Letters, 2010, 46(4): 299.
[10] [10] AHMED R, SIDDIQUE A, ANDERSON J, et al. Integration of GaN and diamond using epitaxial lateral overgrowth[J]. ACS Applied Materials & Interfaces, 2020, 12(35): 39397-39404.
[11] [11] MAY P W. Diamond thin films: a 21 st-century material[J]. Philosophical Transactions of the Royal Society of London Series A: Mathematical, Physical and Engineering Sciences, 2000, 358(1766): 473-495.
[12] [12] HAGEMAN P R, SCHERMER J J, LARSEN P K. GaN growth on single-crystal diamond substrates by metalorganic chemical vapour deposition and hydride vapour deposition[J]. Thin Solid Films, 2003, 443(1/2): 9-13.
[13] [13] MU F W, HE R, SUGA T. Room temperature GaN-diamond bonding for high-power GaN-on-diamond devices[J]. Scripta Materialia, 2018, 150: 148-151.
[14] [14] ABOU DAHER M, LESECQ M, TILMANT P, et al. AlGaN/GaN high electron mobility transistors on diamond substrate obtained through aluminum nitride bonding technology[J]. Journal of Vacuum Science & Technology B, 2020, 38(3): 033201.
[15] [15] KAHNG Y H, LEE S, CHOE M, et al. A study of graphene films synthesized on nickel substrates: existence and origin of small-base-area peaks[J]. Nanotechnology, 2011, 22(4): 045706.
[16] [16] LIEN D H, DURN RETAMAL J R, KE J J, et al. Surface effects in metal oxide-based nanodevices[J]. Nanoscale, 2015, 7(47): 19874-19884.
[17] [17] LU W, XIE P, LIEBER C M. Nanowire transistor performance limits and applications[J]. IEEE Transactions on Electron Devices, 2008, 55(11): 2859-2876.
[18] [18] YU J D, WANG L, HAO Z B, et al. Van der Waals epitaxy of III-nitride semiconductors based on 2D materials for flexible applications[J]. Advanced Materials, 2020, 32(15): 1903407.
[19] [19] KIM J, BAYRAM C, PARK H, et al. Principle of direct van der Waals epitaxy of single-crystalline films on epitaxial graphene[J]. Nature Communications, 2014, 5(1): 1-7.
[20] [20] ZHOU H, XU Y, CHEN X W, et al. Direct van der Waals epitaxy of stress-free GaN films on PECVD grown graphene[J]. Journal of Alloys and Compounds, 2020, 844: 155870.
[21] [21] WU H D, NING J, JIA Y Q, et al. Van der Waals self-assembled silica-nanosphere/graphene buffer layer for high-quality gallium nitride growth[J]. Crystal Growth & Design, 2021, 21(10): 5848-5853.
[22] [22] YU J D, HAO Z B, DENG J, et al. Low-temperaturevan der Waals epitaxy of GaN films on graphene through AlN buffer by plasma-assisted molecular beam epitaxy[J]. Journal of Alloys and Compounds, 2021, 855: 157508.
[23] [23] KOMA A, SUNOUCHI K, MIYAJIMA T. Fabrication and characterization of heterostructures with subnanometer thickness[J]. Microelectronic Engineering, 1984, 2(1/2/3): 129-136.
[24] [24] KIM Y, CRUZ S S, LEE K, et al. Remote epitaxy through graphene enables two-dimensional material-based layer transfer[J]. Nature, 2017, 544(7650): 340-343.
[25] [25] NEPAL N, WHEELER V D, ANDERSON T J, et al. Epitaxial growth of III-nitride/graphene heterostructures for electronic devices[J]. Applied Physics Express, 2013, 6(6): 061003.
[26] [26] KONG W, LI H S, QIAO K, et al. Polarity governs atomic interaction through two-dimensional materials[J]. Nature Materials, 2018, 17(11): 999-1004.
[27] [27] JOURNOT T, OKUNO H, MOLLARD N, et al. Remote epitaxy using graphene enables growth of stress-free GaN[J]. Nanotechnology, 2019, 30(50): 505603.
[28] [28] CHEN Y, ZANG H, JIANG K, et al. Improved nucleation of AlN on in situ nitrogen doped graphene for GaN quasi-van der waals epitaxy[J]. Applied Physics Letters, 2020, 117(5): 051601.
[29] [29] SHEN X, WANG D, NING J, et al. MMA-enabled ultraclean graphene transfer for fast-response graphene/GaN ultraviolet photodetectors[J]. Carbon, 2020, 169: 92-98.
[30] [30] CHOI J K, HUH J H, KIM S D, et al. One-step graphene coating of heteroepitaxial GaN films[J]. Nanotechnology, 2012, 23(43): 435603.
[31] [31] KIM M H, DO Y G, KANG H C, et al. Effects of step-graded AlxGa1-xN interlayer on properties of GaN grown on Si(111) using ultrahigh vacuum chemical vapor deposition[J]. Applied Physics Letters, 2001, 79(17): 2713-2715.
Get Citation
Copy Citation Text
BAI Ling, NING Jing, ZHANG Jincheng, WANG Dong, WANG Boyu, WU Haidi, ZHAO Jianglin, TAO Ran, LI Zhonghui. Van der Waals Epitaxial GaN Thin Films on Polycrystalline Diamond Substrate[J]. Journal of Synthetic Crystals, 2023, 52(5): 901
Category:
Received: Mar. 6, 2023
Accepted: --
Published Online: Jun. 11, 2023
The Author Email:
CSTR:32186.14.