Laser & Optoelectronics Progress, Volume. 59, Issue 7, 0714004(2022)

Multi-Objective Optimization of Laser Cladding Parameters Based on RSM and NSGA-Ⅱ Algorithm

Yanyan Wang1、*, Jiahao Li1, Linsen Shu1,2, and Chengming Su3
Author Affiliations
  • 1School of Mechanical Engineering, Shaanxi University of Technology, Hanzhong , Shaanxi 723001, China
  • 2Shaanxi Provincial Key Laboratory of Industrial Automation, Hanzhong , Shaanxi 723001, China
  • 3Shaanxi Tianyuan Intelligent Remanufacturing Co., Ltd., Xi'an , Shaanxi 710065, China
  • show less
    Figures & Tables(10)
    3 kW fiber cladding laser
    Powder topography
    Cross-section diagram of single cladding layer
    Residuals for each response value. (a) Dilution rate; (b) HAZ depth; (c) microhardness
    Flow chart of NSGA-Ⅱ algorithm
    Pareto front solution after optimization
    Comparison of cross-section morphology of cladding layer between best process parameter group and contrast experimental groups
    Comparison of response values between best process parameter group and contrast experimental groups
    • Table 1. Input variable and its response values of BBD experimental design

      View table

      Table 1. Input variable and its response values of BBD experimental design

      BBD experimental numberInput variableResponse value
      Laser power /WScanning speed /(mm·s-1Powder feeding rate /(r·min-1Dilution rate /%HAZ depth /μmMicrohardness /HV0.5
      S11800241.544.7299.37623.8
      S21800201.541.2308.75641.6
      S31800202.529.1293.91641.2
      S41800242.026.9286.45654.0
      S51800161.541.7331.07744.3
      S62100162.526.1350.98664.9
      S72100202.035.2312.28415.1
      S82100242.029.7273.49671.0
      S92100162.523.5364.99704.1
      S102100241.542.1307.11627.7
      S112100242.525.9285.17618.5
      S122100202.527.0315.57663.1
      S132100201.540.9333.01748.7
      S142400201.539.7318.64649.3
      S152400242.033.9311.43480.1
      S162400162.024.7409.78631.1
      S172400202.521.6332.48744.7
    • Table 2. Analysis of variance of response values

      View table

      Table 2. Analysis of variance of response values

      Variance sourceResponse value
      Dilution rateHAZ depthMicrohardness
      Model2383.0015756.752922.91
      F value41.936.8446.84
      P value<0.0001<0.0001<0.0001
      Lack of fit0.49260.42310.4625
      R20.98180.99790.9741
      Signal to noise ratio17.5409.54818.840
    Tools

    Get Citation

    Copy Citation Text

    Yanyan Wang, Jiahao Li, Linsen Shu, Chengming Su. Multi-Objective Optimization of Laser Cladding Parameters Based on RSM and NSGA-Ⅱ Algorithm[J]. Laser & Optoelectronics Progress, 2022, 59(7): 0714004

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Lasers and Laser Optics

    Received: Jun. 1, 2021

    Accepted: Jun. 23, 2021

    Published Online: Mar. 8, 2022

    The Author Email: Yanyan Wang (wangyanyanustb@163.com)

    DOI:10.3788/LOP202259.0714004

    Topics