Laser & Optoelectronics Progress, Volume. 62, Issue 19, 1906016(2025)

Self-Supervised Denoising Method for Polarization Image Based on Mask Strategy (Invited)

Haofeng Hu1,2,3, Tianci Li1,3, Yuanyang Bu4, and Linghao Shen2、*
Author Affiliations
  • 1School of Future Technology, Tianjin University, Tianjin 300072, China
  • 2School of Marine Science and Technology, Tianjin University, Tianjin 300072, China
  • 3School of Precision Instrument and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China
  • 4School of Automation, Northwestern Polytechnical University, Xi'an 710072, Shaanxi , China
  • show less
    Figures & Tables(14)
    Overall framework of polarization denoising algorithm
    Comparison of polarization denoising results by different denoising algorithms
    Comparison of denoising results before and after adding AoP loss. (a) Recovery images; (b) detail enlargement images
    Effects of different mask ratios on polarization denoising results
    Denoising performances on the green channel of color-polarization dataset by proposed algorithm when adding G&P Noise (σ = λ = 20.0)
    Denoising performances on color-polarization dataset by proposed algorithm when adding G&P Noise (σ = λ = 20.0)
    • Table 1. PSNR of different denoising algorithms applied to polarization denoising

      View table

      Table 1. PSNR of different denoising algorithms applied to polarization denoising

      Test noiseImageTraditionalSupervisedUnsupervisedNoise
      BM3DDnCNNRestormerNoise2VoidAP-BSNSDAPProposed
      Real moise (σ = 14.7)S025.6825.4127.2825.4325.5525.8426.4423.84
      DoP22.7226.3422.7321.9922.8425.3027.318.21
      AoP9.9510.948.598.699.1710.2413.307.90
      Real noise (σ = 16.1)S032.8533.8230.9431.8733.2332.5034.0725.54
      DoP23.6126.2323.9022.9123.9025.9527.929.25
      AoP10.2810.228.688.659.2610.5313.637.94
      AWGN (σ = 30.0)S032.0133.2727.3126.5630.2730.5935.7619.22
      DoP21.1726.2113.9219.4321.4222.4127.144.27
      AoP8.7410.128.848.398.448.6613.357.78
      Poisson noise (λ = 25.0)S033.2134.3729.9729.8331.1831.6639.0020.38
      DoP20.1026.1622.1420.2121.8122.3827.025.03
      AoP8.7810.228.398.288.478.6313.447.83
      G&P Noise (σ = λ = 20.0)S030.3733.9826.5827.2429.4829.5336.5017.83
      DoP18.3825.9321.9221.3420.4520.5227.253.36
      AoP8.289.728.258.228.218.2313.327.74
      S&P Noise (r = 0.12)S020.9614.8218.1120.7921.1519.8223.9810.90
      DoP11.206.1718.9114.0415.5311.5325.783.23
      AoP7.807.617.938.057.807.6212.899.71
      S&P Noise (r = 0.05)S025.8019.6923.2326.0323.8824.6028.4813.47
      DoP14.789.4614.6418.2714.3413.6526.495.39
      AoP7.958.097.868.377.908.0613.1611.46
    • Table 2. SSIM of different denoising algorithms applied to polarization denoising

      View table

      Table 2. SSIM of different denoising algorithms applied to polarization denoising

      Test noiseImageTraditionalSupervisedUnsupervisedNoise
      BM3DDnCNNRestormerNoise2VoidAP-BSNSDAPProposed
      Real moise (σ = 14.7)S00.8830.8570.8580.8600.8840.8840.9270.416
      DoP0.5500.6160.3080.3720.4400.5450.6820.013
      AoP0.1510.2130.0560.0520.0630.1620.3530.028
      Real noise (σ = 16.1)S00.9200.9290.8590.8580.9170.9140.9580.396
      DoP0.5820.5850.3500.3870.4740.5790.7030.019
      AoP0.1900.1910.0620.0510.0690.1830.4070.031
      AWGN (σ = 30.0)S00.8060.8570.4470.730.7900.8190.9060.112
      DoP0.3350.5820.1940.2640.2410.3350.6620.002
      AoP0.0460.1580.0650.0330.0280.0390.3670.016
      Poisson noise (λ = 25.0)S00.8420.8850.7750.7780.8370.8460.9490.197
      DoP0.3610.5850.2510.2390.2490.3230.6750.002
      AoP0.0640.1610.0460.0250.0340.0440.3820.020
      G&P Noise (σ = λ = 20.0)S00.7370.8690.7110.7630.7600.7680.9180.104
      DoP0.2130.5680.2430.2900.174.2040.6620.001
      AoP0.0370.1560.0350.0320.0240.0290.3640.015
      S&P Noise (r = 0.12)S00.4060.0570.4940.3420.4140.2290.8080.021
      DoP0.0550.0020.1960.0320.0720.0160.6070.0001
      AoP0.0200.0110.0130.0110.0120.0110.2950.159
      S&P Noise (r = 0.05)S00.6380.3660.4490.6700.4770.4880.8710.051
      DoP0.1640.1070.0650.1570.0890.0730.6400.001
      AoP0.0360.0240.0140.0240.0140.0170.3460.247
    • Table 3. PSNR and SSIM before and after adding AoP loss under different noise levels

      View table

      Table 3. PSNR and SSIM before and after adding AoP loss under different noise levels

      Test noisePSNR /dBSSIM
      With AoP lossWithout AoP lossWith AoP lossWithout AoP loss
      Real moise (σ = 14.7)13.3012.560.3530.367
      Real noise (σ = 16.1)13.6312.490.4070.391
      AWGN (σ = 30.0)13.3512.520.3670.357
      Poisson noise (λ = 25.0)13.4412.830.3820.380
      G&P Noise (σ = λ = 20.0)13.3212.510.3640.354
    • Table 4. Results of ablation experiments for each component

      View table

      Table 4. Results of ablation experiments for each component

      without Pretrainwithout StackLastEMA after IterationPSNR /dBSSIM
      S0 imageDoP imageAoP imageS0 imageDoP imageAoP image
      ×××33.8527.5512.660.9560.6940.392
      ×××33.2624.8310.840.9270.5500.241
      ×××33.3527.7013.390.9480.6910.384
      ×××33.8727.9513.590.9560.7060.405
      ××××34.0727.9213.630.9580.7030.407
    • Table 5. PSNR of green-channel denoising on color-polarization dataset by proposed algorithm

      View table

      Table 5. PSNR of green-channel denoising on color-polarization dataset by proposed algorithm

      Test noiseDenoise resultNoise
      S0 imageDoP imageAoP imageS0 imageDoP imageAoP image
      AWGN (σ = 30.0)36.0530.5110.5619.203.8278.464
      Poisson noise (λ = 25.0)38.1330.7210.8020.324.7628.488
      G&P Noise (σ = λ = 20.0)36.1230.5310.3817.823.2238.441
    • Table 6. SSIM of green-channel denoising on color-polarization dataset by proposed algorithm

      View table

      Table 6. SSIM of green-channel denoising on color-polarization dataset by proposed algorithm

      Test noiseDenoise resultNoise
      S0 imageDoP imageAoP imageS0 imageDoP imageAoP image
      AWGN (σ = 30.0)0.9220.6800.1960.1270.0010.002
      Poisson noise (λ = 25.0)0.9370.6800.1870.1830.0010.018
      G&P Noise (σ = λ = 20.0)0.9210.6750.1850.1100.0010.015
    • Table 7. PSNR of denoising on color-polarization dataset by proposed algorithm

      View table

      Table 7. PSNR of denoising on color-polarization dataset by proposed algorithm

      Test noiseDenoise resultNoise
      S0 imageDoP imageAoP imageS0 imageDoP imageAoP image
      AWGN (σ = 30.0)36.3810.8131.1719.128.5884.159
      Poisson noise (λ = 25.0)38.1611.0031.7429.928.6025.004
      G&P Noise (σ = λ = 20.0)36.3310.5931.0217.528.5613.438
    • Table 8. SSIM of denoising on color-polarization dataset by proposed algorithm

      View table

      Table 8. SSIM of denoising on color-polarization dataset by proposed algorithm

      Test noiseDenoise resultNoise
      S0 imageDoP imageAoP imageS0 imageDoP imageAoP image
      AWGN (σ = 30.0)0.9340.2250.7300.1320.0170.002
      Poisson noise (λ = 25.0)0.9460.2360.7420.1790.0180.002
      G&P Noise (σ = λ = 20.0)0.9320.2040.7210.1100.0150.001
    Tools

    Get Citation

    Copy Citation Text

    Haofeng Hu, Tianci Li, Yuanyang Bu, Linghao Shen. Self-Supervised Denoising Method for Polarization Image Based on Mask Strategy (Invited)[J]. Laser & Optoelectronics Progress, 2025, 62(19): 1906016

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Fiber Optics and Optical Communications

    Received: Jun. 11, 2025

    Accepted: Jul. 21, 2025

    Published Online: Sep. 28, 2025

    The Author Email: Linghao Shen (shenlinghao@tju.edu.cn)

    DOI:10.3788/LOP251422

    CSTR:32186.14.LOP251422

    Topics