NUCLEAR TECHNIQUES, Volume. 46, Issue 4, 040005(2023)
QCD critical end point and baryon number fluctuation
[1] Fodor Z, Katz S D. A new method to study lattice QCD at finite temperature and chemical potential[J]. Physics Letters B, 534, 87-92(2002).
[2] Ding H T, Karsch F, Mukherjee S. Thermodynamics of strong-interaction matter from lattice QCD[M]. Quark-Gluon Plasma 5. World Scientific, 1-65(2016).
[3] Schmidt C, Sharma S. The phase structure of QCD[J]. Journal of Physics G, 44, 104002(2017).
[4] Pisarski R D, Wilczek F. Remarks on the chiral phase transition in chromodynamics[J]. Physical Review D, 29, 338-341(1984).
[5] Hatta Y, Ikeda T. Universality, the QCD critical and tricritical point, and the quark number susceptibility[J]. Physical Review D, 67, 014028(2003).
[6] Schwarz T M, Klevansky S P, Papp G. Phase diagram and bulk thermodynamical quantities in the Nambu-Jona-Lasinio model at finite temperature and density[J]. Physical Review C, 60, 055205(1999).
[7] Bowman E S, Kapusta J I. Critical points in the linear σ model with quarks[J/OL]. Physical Review C, 79, 015202(2009).
[8] Mao H, Jin J S, Huang M. Phase diagram and thermodynamics of the Polyakov linear sigma model with three quark flavors[J]. Journal of Physics G: Nuclear and Particle Physics, 37, 035001(2010).
[9] Schaefer B J, Wagner M. QCD critical region and higher moments for three-flavor models[J]. Physical Review D, 85, 034027(2012).
[10] Schaefer B J, Wagner M. Higher-order ratios of baryon number cumulants[J]. Central European Journal of Physics, 10, 1326-1329(2012).
[11] Qin S X, Chang L, Chen H et al. Phase diagram and critical endpoint for strongly-interacting quarks[J]. Physical Review Letters, 106, 172301(2011).
[12] Luecker J, Fischer C S, Fister L et al. Critical point and deconfinement from Dyson–Schwinger equations[C], 057(2013).
[13] Fu W J, Pawlowski J M, Rennecke F et al. Baryon number fluctuations at finite temperature and density[J]. Physical Review D, 94, 116020(2016).
[14] Stephanov M A. Non-Gaussian fluctuations near the QCD critical point[J]. Physical Review Letters, 102, 032301(2009).
[15] Stephanov M A. On the sign of kurtosis near the QCD critical point[J]. Physical Review Letters, 107, 052301(2011).
[16] Asakawa M, Ejiri S, Kitazawa M. Third moments of conserved charges as probes of QCD phase structure[J]. Physical Review Letters, 103, 262301(2009).
[17] Athanasiou C, Rajagopal K, Stephanov M. Using higher moments of fluctuations and their ratios in the search for the QCD critical point[J]. Physical Review D, 82, 074008(2010).
[18] Zhu L L, Wang B, Wang M et al. Energy and centrality dependence of light nuclei production in relativistic heavy-ion collisions[J]. Nuclear Science and Techniques, 33, 45(2022).
[19] Wang M, Tao J Q, Zheng H et al. Number-of-constituent-quark scaling of elliptic flow: a quantitative study[J]. Nuclear Science and Techniques, 33, 37(2022).
[20] Lan S W, Shi S S. Anisotropic flow in high baryon density region[J]. Nuclear Science and Techniques, 33, 21(2022).
[21] Wang H, Chen J H. Anisotropy flows in Pb-Pb collisions at LHC energies from parton scatterings with heavy quark trigger[J]. Nuclear Science and Techniques, 33, 15(2022).
[22] PU Shi, HUANG Xuguang. Relativistic spin hydrodynamics[J/OL]. Acta Physica Sinica(2023).
[23] Lin Z W, Zheng L. Further developments of a multi-phase transport model for relativistic nuclear collisions[J]. Nuclear Science and Techniques, 32, 113(2021).
[24] Xu J F. Bulk viscosity of interacting magnetized strange quark matter[J]. Nuclear Science and Techniques, 32, 111(2021).
[25] Su Y, Sun Y J, Zhang Y F et al. Non-extensive statistical distributions of charmed meson production in Pb-Pb and pp(p¯) collisions[J]. Nuclear Science and Techniques, 32, 108(2021).
[26] Wang H, Chen J H. Study on open charm hadron production and angular correlation in high-energy nuclear collisions[J]. Nuclear Science and Techniques, 32, 2(2021).
[27] Tang Z B, Zha W M, Zhang Y F. An experimental review of open heavy flavor and quarkonium production at RHIC[J]. Nuclear Science and Techniques, 31, 81(2020).
[28] Gao J H, Ma G L, Pu S et al. Recent developments in chiral and spin polarization effects in heavy-ion collisions[J]. Nuclear Science and Techniques, 31, 90(2020).
[29] Liu Y C, Huang X G. Anomalous chiral transports and spin polarization in heavy-ion collisions[J]. Nuclear Science and Techniques, 31, 56(2020).
[30] Wang F Q, Zhao J. Search for the chiral magnetic effect in heavy ion collisions[J]. Nuclear Science and Techniques, 29, 179(2018).
[31] Hattori K, Huang X G. Novel quantum phenomena induced by strong magnetic fields in heavy-ion collisions[J]. Nuclear Science and Techniques, 28, 26(2017).
[32] SUN Xu, ZHOU Chensheng, CHEN Jinhui et al. Measurements of global polarization of QCD matter in heavy-ion collisions[J/OL]. Acta Physica Sinica(2023).
[33] GAO Jianhua, HUANG Xuguang, LIANG Zuotang et al. Spin-orbital coupling in strong interaction and global spin polarization[J/OL]. Acta Physica Sinica(2023).
[34] JIANG Zefang, WU Xiangyu, YU Huaqing et al. The direct flow of charged particles and the global polarization of hyperons in 200 AGeV Au+Au collisions at RHIC[J/OL]. Acta Physica Sinica(2023).
[35] SHENG Xinli, LIANG Zuotang, WANG Qun. Global spin alignment of vector mesons in heavy ion collisions[J/OL]. Acta Physica Sinica(2023).
[36] Adamczyk L, Adkins J K, Agakishiev G et al. Energy dependence of moments of net-proton multiplicity distributions at RHIC[J]. Physical Review Letters, 112, 032302(2014).
[37] Aggarwal M M, Ahammed Z, Alakhverdyants A V et al. Higher moments of net-proton multiplicity distributions at RHIC[J]. Physical Review Letters, 105, 022302(2010).
[38] Luo X F, Xu N. Search for the QCD critical point with fluctuations of conserved quantities in relativistic heavy-ion collisions at RHIC: an overview[J]. Nuclear Science and Techniques, 28, 112(2017).
[39] Abdallah M S, Aboona B E, Adam J et al. Measurements of proton high order cumulants in sNN= 3 GeV Au+Au collisions and implications for the QCD critical point[J]. Physical Review Letters, 128, 202303(2022).
[40] Critelli R, Noronha J, Noronha-Hostler J et al. Critical point in the phase diagram of primordial quark-gluon matter from black hole physics[J]. Physical Review D, 96, 096026(2017).
[41] Wu S J, Shen C, Song H C. Dynamically exploring the QCD matter at finite temperatures and densities: a short review[J]. Chinese Physics Letters, 38, 081201(2021).
[42] Shen C, Yan L. Recent development of hydrodynamic modeling in heavy-ion collisions[J]. Nuclear Science and Techniques, 31, 122(2020).
[43] Fang R H, Dong R D, Hou D F et al. Thermodynamics of the system of massive Dirac fermions in a uniform magnetic field[J]. Chinese Physics Letters, 38, 091201(2021).
[44] Peng H H, Zhang J J, Sheng X L et al. Ideal spin hydrodynamics from the Wigner function approach[J]. Chinese Physics Letters, 38, 116701(2021).
[45] Vovchenko V, Steinheimer J, Philipsen O et al. Cluster expansion model for QCD baryon number fluctuations: no phase transition at μB/Tπ[J]. Physical Review D, 97, 114030(2018).
[46] Fu J H. Higher moments of net-proton multiplicity distributions in heavy ion collisions at chemical freeze-out[J]. Physics Letters B, 722, 144-150(2013).
[47] Karsch F, Redlich K. Probing freeze-out conditions in heavy ion collisions with moments of charge fluctuations[J]. Physics Letters B, 695, 136-142(2011).
[48] Fu J H. Higher moments of multiplicity fluctuations in a hadron-resonance gas with exact conservation laws[J]. Physical Review C, 96, 034905(2017).
[49] Bazavov A, Ding H T, Hegde P et al. The QCD equation of state to O(μB6) from lattice QCD[J]. Physical Review D, 95, 054504(2017).
[50] Bhattacharyya A, Ghosh S K, Maity S et al. Reparametrizing the Polyakov-Nambu-jona-lasinio model[J]. Physical Review D, 95, 054005(2017).
[51] Li Z B, Xu K, Wang X Y et al. The kurtosis of net baryon number fluctuations from a realistic Polyakov-Nambu-Jona-Lasinio model along the experimental freeze-out line[J]. The European Physical Journal C, 79, 245(2019).
[52] Ghosh S K, Mukherjee T K, Mustafa M G et al. PNJL model with a Van der Monde term[J]. Physical Review D, 77, 094024(2008).
[53] Das S. Identified particle production and freeze-out properties in heavy-ion collisions at RHIC Beam Energy Scan program[J]. EPJ Web of Conferences, 90, 08007(2015).
[54] Adamczyk L, Adkins J K, Agakishiev G et al. Bulk properties of the medium produced in relativistic heavy-ion collisions from the beam energy scan program[J]. Physical Review C, 96, 044904(2017).
[55] Kaczmarek O. Lattice QCD results on soft and hard probes of strongly interacting matter[J]. Nuclear Physics A, 967, 137-144(2017).
[56] Begun V V, Vovchenko V, Gorenstein M I. Updates to the p+p and A+A chemical freeze-out lines from the new experimental data[J]. Journal of Physics: Conference Series, 779, 012080(2017).
[57] Fan W K, Luo X F, Zong H S. Mapping the QCD phase diagram with susceptibilities of conserved charges within Nambu-Jona-Lasinio model[J]. International Journal of Modern Physics A, 32, 1750061(2017).
[58] Braun-Munzinger P, Friman B, Redlich K et al. Relativistic nuclear collisions: establishing a non-critical baseline for fluctuation measurements[J]. Nuclear Physics A, 1008, 122141(2021).
Get Citation
Copy Citation Text
Kun XU, Mei HUANG. QCD critical end point and baryon number fluctuation[J]. NUCLEAR TECHNIQUES, 2023, 46(4): 040005
Category: Research Articles
Received: Dec. 12, 2022
Accepted: --
Published Online: Apr. 27, 2023
The Author Email: HUANG Mei (huangmei@uacs.ac.cn)