Opto-Electronic Engineering, Volume. 50, Issue 7, 230089(2023)
Effect of polarized laser illumination on imaging contrast of multilayer thin film structure
[1] Dance A. Connectomes make the map[J]. Nature, 526, 147-149(2015).
[2] Brittin C A, Cook S J, Hall D H et al. A multi-scale brain map derived from whole-brain volumetric reconstructions[J]. Nature, 591, 105-110(2021).
[3] De Boer P, Hoogenboom J P, Giepmans B N G. Correlated light and electron microscopy: ultrastructure lights up![J]. Nat Methods, 12, 503-513(2015).
[4] Fu Z F, Peng D M, Zhang M S et al. mEosEM withstands osmium staining and Epon embedding for super-resolution CLEM[J]. Nat Methods, 17, 55-58(2020).
[5] Li A A, Gong H, Zhang B et al. Micro-optical sectioning tomography to obtain a high-resolution atlas of the mouse brain[J]. Science, 330, 1404-1408(2010).
[6] Gong H, Zeng S Q, Yan C et al. Continuously tracing brain-wide long-distance axonal projections in mice at a one-micron voxel resolution[J]. NeuroImage, 74, 87-98(2013).
[8] Giepmans B N G, Deerinck T J, Smarr B L et al. Correlated light and electron microscopic imaging of multiple endogenous proteins using Quantum dots[J]. Nat Methods, 2, 743-749(2005).
[9] Kukulski W, Schorb M, Welsch S et al. Correlated fluorescence and 3D electron microscopy with high sensitivity and spatial precision[J]. J Cell Biol, 192, 111-119(2011).
[10] Yao J J, Wang L D, Yang J M et al. High-speed label-free functional photoacoustic microscopy of mouse brain in action[J]. Nat Methods, 12, 407-410(2015).
[11] Li X F, Kang L, Zhang Y et al. High-speed label-free ultraviolet photoacoustic microscopy for histology-like imaging of unprocessed biological tissues[J]. Opt Lett, 45, 5401-5404(2020).
[12] Kut C, Chaichana K L, Xi J F et al. Detection of human brain cancer infiltration ex vivo and in vivo using quantitative optical coherence tomography[J]. Sci Trans Med, 7, 292ra100(2015).
[13] Li Y Y, Fan J Y, Jiang T L et al. Review of the development of optical coherence tomography imaging navigation technology in ophthalmic surgery[J]. Opto-Electron Eng, 50, 220027(2023).
[14] Jiang P Q, Wang P H. Research on dispersion compensation technology for SD-OCT system[J]. Opto-Electron Eng, 48, 210184(2021).
[15] Schalek R, Kasthuri N, Hayworth K et al. Development of high-throughput, high-resolution 3D reconstruction of large-volume biological tissue using automated tape collection ultramicrotomy and scanning electron microscopy[J]. Microsc Microanal, 17, 966-967(2011).
[16] Fan H, Luo D S, Zhu J L et al. Optical multilayer interference tomography compatible with tape-based serial SEM for mesoscale neuroanatomy[J]. ACS Photonics, 9, 25-33(2021).
[17] Sato S, Ando S. Interferometric imaging ellipsometry: fundamental study[J]. Proc SPIE, 7405, 74050F(2009).
[18] Stine K J. Brewster angle microscopy[M]. Steed J W, Gale P A. Supramolecular Chemistry: From Molecules to Nanomaterials(2012).
[19] Ivanova S, Tonchev V, Yokoi N et al. Surface properties of squalene/meibum films and NMR confirmation of squalene in tears[J]. Int J Mol Sci, 16, 21813-21831(2015).
[20] Pascoe K J. Reflectivity and transmissivity through layered, lossy media: a user-friendly approach[R](2001).
[21] Born M, Wolf E[M]. Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light(1980).
[22] Hayworth K J, Morgan J L, Schalek R et al. Imaging ATUM ultrathin section libraries with WaferMapper: a multi-scale approach to EM reconstruction of neural circuits[J]. Front Neural Circuits, 8, 68(2014).
[23] Khan R, Gul B, Khan S et al. Refractive index of biological tissues: Review, measurement techniques, and applications[J]. Photodiagnosis Photodyn Ther, 33, 102192(2021).
[24] Nogi M, Handa K, Nakagaito A N et al. Optically transparent bionanofiber composites with low sensitivity to refractive index of the polymer matrix[J]. Appl Phys Lett, 87, 243110(2005).
[25] Lü C L, Cui Z C, Wang Y X et al. Studies on syntheses and properties of episulfide‐type optical resins with high refractive index[J]. J Appl Polym Sci, 89, 2426-2430(2003).
[26] Binding J, Arous J B, Léger J F et al. Brain refractive index measured in vivo with high-NA defocus-corrected full-field OCT and consequences for two-photon microscopy[J]. Opt Express, 19, 4833-4847(2011).
[27] Sousa A A, Hohmann-Marriott M, Aronova M A et al. Determination of quantitative distributions of heavy-metal stain in biological specimens by annular dark-field STEM[J]. J Struct Biol, 162, 14-28(2008).
[28] Hua Y F, Laserstein P, Helmstaedter M. Large-volume en-bloc staining for electron microscopy-based connectomics[J]. Nat Commun, 6, 7923(2015).
[29] Beuthan J, Minet O, Helfmann J et al. The spatial variation of the refractive index in biological cells[J]. Phys Med Biol, 41, 369-382(1996).
[30] Deng Z C, Wang J, Ye Q et al. Determination of continuous complex refractive index dispersion of biotissue based on internal reflection[J]. J Biomed Opt, 21, 015003(2016).
[32] Manion M[M]. Encyclopedia of Optical Engineering(2004).
[33] Kuang C F, Ma Y, Zhou R J et al. Digital micromirror device-based laser-illumination Fourier ptychographic microscopy[J]. Opt Express, 23, 26999-27010(2015).
[34] Goodman J W[M]. Speckle Phenomena in Optics: Theory and Applications(2007).
Get Citation
Copy Citation Text
Zijian Zhang, Tianyi Wang, Xin Xu, Jixiang Wang, Xin Zhang, Ruobing Zhang, Guohua Shi, Hong Ye. Effect of polarized laser illumination on imaging contrast of multilayer thin film structure[J]. Opto-Electronic Engineering, 2023, 50(7): 230089
Category: Article
Received: Apr. 19, 2023
Accepted: Jun. 9, 2023
Published Online: Sep. 25, 2023
The Author Email: