Acta Optica Sinica, Volume. 41, Issue 24, 2423002(2021)
Long-Wave Infrared Ultra-Broadband Perfect Absorber with Embedded Structure
[1] Guo C F, Sun T Y, Cao F et al. Metallic nanostructures for light trapping in energy-harvesting devices[J]. Light: Science & Applications, 3, e161(2014).
[2] Han S, Shin J H, Jung P H et al. Broadband solar thermal absorber based on optical metamaterials for high-temperature applications[J]. Advanced Optical Materials, 4, 1265-1273(2016).
[3] Alkurt F O, Altintas O, Ozakturk M et al. Enhancement of image quality by using metamaterial inspired energy harvester[J]. Physics Letters A, 384, 126041(2020).
[4] Gong Y K, Wang Z B, Li K et al. Highly efficient and broadband mid-infrared metamaterial thermal emitter for optical gas sensing[J]. Optics Letters, 42, 4537-4540(2017).
[5] Li Z G, Stan L, Czaplewski D A et al. Wavelength-selective mid-infrared metamaterial absorbers with multiple tungsten cross resonators[J]. Optics Express, 26, 5616-5631(2018).
[6] Haxha S. AbdelMalek F, Ouerghi F, et al. Metamaterial superlenses operating at visible wavelength for imaging applications[J]. Scientific Reports, 8, 16119(2018).
[7] Abdulkarim Y I, Deng L W, Karaaslan M et al. Determination of the liquid chemicals depending on the electrical characteristics by using metamaterial absorber based sensor[J]. Chemical Physics Letters, 732, 136655(2019).
[8] Bakır M, Dalgaç Ş, Karaaslan M et al. A comprehensive study on fuel adulteration sensing by using triple ring resonator type metamaterial[J]. Journal of the Electrochemical Society, 166, B1044-B1052(2019).
[10] Landy N I, Sajuyigbe S, Mock J J et al. Perfect metamaterial absorber[J]. Physical Review Letters, 100, 207402(2008).
[11] Mehrabi M, Rajabalipanah H, Abdolali A et al. Polarization-insensitive, ultra-broadband, and compact metamaterial-inspired optical absorber via wide-angle and highly efficient performances[J]. Applied Optics, 57, 3693-3703(2018).
[12] Kim Y J, Hwang J S, Yoo Y J et al. Ultrathin microwave metamaterial absorber utilizing embedded resistors[J]. Journal of Physics D: Applied Physics, 50, 405110(2017).
[13] Kim Y J, Yoo Y J, Hwang J S et al. Ultra-broadband microwave metamaterial absorber based on resistive sheets[J]. Journal of Optics, 19, 015103(2017).
[14] Wang Y, Xuan X F, Zhu L et al. Multilayer rectangular broadband metamaterial absorber[J]. Acta Optica Sinica, 40, 1523001(2020).
[15] Zhu L, Jin Y, Li K K et al. Numerical study of the MSCB nanoantenna as ultra-broadband absorber[J]. Plasmonics, 15, 319-325(2020).
[16] Zhu L, Jin Y, Liu H et al. Ultra-broadband absorber based on metal-insulator-metal four-headed arrow nanostructure[J]. Plasmonics, 15, 2153-2159(2020).
[17] Zhu L, Wang Y, Xiong G et al. Design and absorption characteristics of broadband nano-metamaterial solar absorber[J]. Acta Optica Sinica, 37, 0923001(2017).
[18] Li Y Y, Chen Q Q, Wu B et al. Broadband perfect metamaterial absorber based on the gallium arsenide grating complex structure[J]. Results in Physics, 15, 102760(2019).
[19] Luo Y, Liang Z Z, Meng D J et al. Ultra-broadband and high absorbance metamaterial absorber in long wavelength infrared based on hybridization of embedded cavity modes[J]. Optics Communications, 448, 1-9(2019).
[20] Liu Y Y, Liu H, Jin Y et al. Ultra-broadband perfect absorber utilizing a multi-size rectangular structure in the UV-MIR range[J]. Results in Physics, 18, 103336(2020).
[21] Liu Y Y, Liu H, Liu K et al. Ultra-broadband perfect absorber with rectangular multilayer structure[J]. Acta Optica Sinica, 40, 2323001(2020).
[22] Duan G W, Schalch J, Zhao X G et al. Analysis of the thickness dependence of metamaterial absorbers at terahertz frequencies[J]. Optics Express, 26, 2242-2251(2018).
[23] Huang S, Xie Z W, Chen W D et al. Metasurface with multi-sized structure for multi-band coherent perfect absorption[J]. Optics Express, 26, 7066-7078(2018).
[24] Yang C H, Jiang M Z, Liu Y C et al. Tunable bandwidth terahertz polarization converter based on vanadium dioxide hybrid metasurface[J]. Chinese Journal of Lasers, 48, 1714001(2021).
[25] Liu X L, Starr T, Starr A F et al. Infrared spatial and frequency selective metamaterial with near-unity absorbance[J]. Physical Review Letters, 104, 207403(2010).
[26] Li J Y, Gan R L, Guo Q S et al. Tailoring optical responses of infrared plasmonic metamaterial absorbers by optical phonons[J]. Optics Express, 26, 16769-16781(2018).
[27] Wang S H, Wang Y F, Zhang S et al. Mid-infrared broadband absorber of full semiconductor epi-layers[J]. Physics Letters A, 381, 1439-1444(2017).
[28] Üstün K, Turhan-Sayan G. Ultra-broadband long-wavelength infrared metamaterial absorber based on a double-layer metasurface structure[J]. Journal of the Optical Society of America B, 34, 456-462(2017).
[29] Li L, Chen H J, Xie Z W et al. Ultra-broadband metamaterial absorber for infrared transparency window of the atmosphere[J]. Physics Letters A, 383, 126025(2019).
[30] Zhou Y, Liang Z Z, Qin Z et al. Small-sized long wavelength infrared absorber with perfect ultra-broadband absorptivity[J]. Optics Express, 28, 1279-1290(2020).
[31] Luo Y, Meng D J, Liang Z Z et al. Ultra-broadband metamaterial absorber in long wavelength infrared band based on resonant cavity modes[J]. Optics Communications, 459, 124948(2020).
[32] Gao H X, Peng W, Cui W L et al. Ultraviolet to near infrared titanium nitride broadband plasmonic absorber[J]. Optical Materials, 97, 109377(2019).
[33] Smith D R, Dalichaouch R, Kroll N et al. Photonic band structure and defects in one and two dimensions[J]. Journal of the Optical Society of America B, 10, 314-321(1993).
[34] Smith D R, Vier D C, Koschny T et al. Electromagnetic parameter retrieval from inhomogeneous metamaterials[J]. Physical Review E, 71, 036617(2005).
[35] Palik E D[M]. Handbook of optical constants of solids II(1985).
[36] Bozhevolnyi S I, Søndergaard T. General properties of slow-plasmon resonant nanostructures: nano-antennas and resonators[J]. Optics Express, 15, 10869-10877(2007).
[37] Jung J, Søndergaard T, Bozhevolnyi S I. Gap plasmon-polariton nanoresonators: scattering enhancement and launching of surface plasmon polaritons[J]. Physical Review B, 79, 035401(2009).
[38] Wu D, Liu C, Liu Y M et al. Numerical study of an ultra-broadband near-perfect solar absorber in the visible and near-infrared region[J]. Optics Letters, 42, 450-453(2017).
Get Citation
Copy Citation Text
Kun Liu, Yuanyuan Liu, Fang Deng, Lu Zhu, Huan Liu. Long-Wave Infrared Ultra-Broadband Perfect Absorber with Embedded Structure[J]. Acta Optica Sinica, 2021, 41(24): 2423002
Category: Optical Devices
Received: Jun. 1, 2021
Accepted: Aug. 9, 2021
Published Online: Nov. 30, 2021
The Author Email: Liu Yuanyuan (lyy.78@163.com)