Spectroscopy and Spectral Analysis, Volume. 29, Issue 4, 931(2009)

NIR Spectroscopy Based on Least Square Support Vector Machines for Quality Prediction of Tomato Juice

HUANG Kang*, WANG Hui-jun, XU Hui-rong, WANG Jian-ping, and YING Yi-bin
Author Affiliations
  • [in Chinese]
  • show less
    References(8)

    [3] [3] Vapnik V N. The Nature of Statistical Learning, 2nd. ed. New York: Springer, 2000.

    [4] [4] Belousov A I, Verzakov S A, Von Frese J. Chemometrics and Intelligent Laboratory Systems, 2002, 64: 15.

    [8] [8] Suykens J A K, Gestel T V, de Brabanter J, et al. Least Squares Support Vector Machines. Singapore: World Scientific, 2002.

    [10] [10] Chauchard F, Cogdill R, Roussel S, et al. Chemometrics and Intelligent Laboratory Systems, 2004, 71: 141.

    [11] [11] Alessandra B, Marco F F, Cesar M, et al. Analytica Chimica Acta, 2006, 579: 25.

    [13] [13] Curda L, Kukacková O. Journal of Food Engineering, 2004, 61(4): 557.

    [14] [14] Bülent U. A Comparison of Support Vector Machines and Partial Least Squares Regression on Spectral data, 2003.

    [15] [15] Thissen U, Pepers M, Ustun B, et al. Chemometrics and Intelligent Laboratory Systems, 2004, 73: 169.

    Tools

    Get Citation

    Copy Citation Text

    HUANG Kang, WANG Hui-jun, XU Hui-rong, WANG Jian-ping, YING Yi-bin. NIR Spectroscopy Based on Least Square Support Vector Machines for Quality Prediction of Tomato Juice[J]. Spectroscopy and Spectral Analysis, 2009, 29(4): 931

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Received: Oct. 16, 2007

    Accepted: --

    Published Online: May. 25, 2010

    The Author Email: HUANG Kang (huangkang23@hotmail.com)

    DOI:

    CSTR:32186.14.

    Topics