Spectroscopy and Spectral Analysis, Volume. 29, Issue 4, 931(2009)
NIR Spectroscopy Based on Least Square Support Vector Machines for Quality Prediction of Tomato Juice
[3] [3] Vapnik V N. The Nature of Statistical Learning, 2nd. ed. New York: Springer, 2000.
[4] [4] Belousov A I, Verzakov S A, Von Frese J. Chemometrics and Intelligent Laboratory Systems, 2002, 64: 15.
[8] [8] Suykens J A K, Gestel T V, de Brabanter J, et al. Least Squares Support Vector Machines. Singapore: World Scientific, 2002.
[10] [10] Chauchard F, Cogdill R, Roussel S, et al. Chemometrics and Intelligent Laboratory Systems, 2004, 71: 141.
[11] [11] Alessandra B, Marco F F, Cesar M, et al. Analytica Chimica Acta, 2006, 579: 25.
[13] [13] Curda L, Kukacková O. Journal of Food Engineering, 2004, 61(4): 557.
[14] [14] Bülent U. A Comparison of Support Vector Machines and Partial Least Squares Regression on Spectral data, 2003.
[15] [15] Thissen U, Pepers M, Ustun B, et al. Chemometrics and Intelligent Laboratory Systems, 2004, 73: 169.
Get Citation
Copy Citation Text
HUANG Kang, WANG Hui-jun, XU Hui-rong, WANG Jian-ping, YING Yi-bin. NIR Spectroscopy Based on Least Square Support Vector Machines for Quality Prediction of Tomato Juice[J]. Spectroscopy and Spectral Analysis, 2009, 29(4): 931
Received: Oct. 16, 2007
Accepted: --
Published Online: May. 25, 2010
The Author Email: HUANG Kang (huangkang23@hotmail.com)
CSTR:32186.14.