Laser & Optoelectronics Progress, Volume. 62, Issue 10, 1015006(2025)

Lightweight Point Cloud Classification Model Based on Offset Attention Mechanism

Leicheng Yang1,2, Yuhong Du1,2、*, and Guangyu Dong1,2
Author Affiliations
  • 1School of Mechanical Engineering, Tiangong University, Tianjin 300387, China
  • 2Key Laboratory of Advanced Mechatronics Equipment Technology, Tianjin 300387, China
  • show less
    Figures & Tables(11)
    Proposed network structure
    Local feature aggregation module
    Offset attention mechanism
    Partial ModelNet40 data. (a) Car; (b) desk; (c) bed; (d) airplane; (e) bookcase; (f) chair
    Loss and OA variation curves. (a) Loss variation curves; (b) OA variation curves
    • Table 1. Software configuration

      View table

      Table 1. Software configuration

      ItemConfiguration
      GPUNVIDIA GeForce RTX 2060 SUPER
      CUDACUDA11.3
      Programming languagePython 3.7.16
      Deep learning frameworkPyTorch 1.12.1
    • Table 2. Comparison of classification results on ModelNet40 dataset

      View table

      Table 2. Comparison of classification results on ModelNet40 dataset

      ModelOA /%mAcc /%
      PointNet989.286.2
      PointNet++1091.9
      PointPN1493.8
      PointConT1993.5
      PointConv2092.5
      DGCNN2192.990.2
      LDGCNN2292.990.3
      GAPointNet2393.090.3
      Point Tranformer1592.8
      PCT1693.2
      Point-PT(N=2)92.989.7
      Point-PT(N=3)93.990.7
    • Table 3. Comparison of classification accuracy

      View table

      Table 3. Comparison of classification accuracy

      ModelOA /%
      CupFlower potVaseBookshelfPlantBed
      PCT651085998599
      Point-PT(N=2)7010859887100
    • Table 4. Model complexity comparison

      View table

      Table 4. Model complexity comparison

      ModelQuantity of parameters /MbitTime /sOA /%
      PointNet93.656289.2
      PointNet++101.736491.9
      PointPN140.803193.8
      DGCNN211.899492.9
      PCT163.107393.2
      PointMLP1312.6018294.1
      Point-PT(N=2)0.361592.9
      Point-PT(N=3)0.873093.9
    • Table 5. Model correctness for different number of neighborhood points kN

      View table

      Table 5. Model correctness for different number of neighborhood points kN

      IndexNeighborhood points kN
      20303540
      OA /%92.592.592.692.9
      mAcc /%89.090.090.189.7
      Time /s12.013.014.015.0
    • Table 6. Results of ablation experiment

      View table

      Table 6. Results of ablation experiment

      OA /%
      ×××
      N=292.9(0.36 Mbit)92.6(0.27 Mbit)90.8(0.30 Mbit)
      N=393.9(0.87 Mbit)92.6(0.51 Mbit)91.1(0.65 Mbit)
      N=493.7(2.77 Mbit)92.7(1.33 Mbit)91.4(1.88 Mbit)
    Tools

    Get Citation

    Copy Citation Text

    Leicheng Yang, Yuhong Du, Guangyu Dong. Lightweight Point Cloud Classification Model Based on Offset Attention Mechanism[J]. Laser & Optoelectronics Progress, 2025, 62(10): 1015006

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Machine Vision

    Received: Sep. 30, 2024

    Accepted: Nov. 7, 2024

    Published Online: May. 9, 2025

    The Author Email: Yuhong Du (16629268205@163.com)

    DOI:10.3788/LOP242058

    CSTR:32186.14.LOP242058

    Topics