Journal of Inorganic Materials, Volume. 39, Issue 8, 903(2024)

Interface Layer of Te-based Thermoelectric Device: Abnormal Growth and Interface Stability

Xin MIAO1, Shiqiang YAN1, Jindou WEI1, Chao WU1, Wenhao FAN2, and Shaoping CHEN1、*
Author Affiliations
  • 11. College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
  • 22. College of Physics, Taiyuan University of Technology, Taiyuan 030024, China
  • show less
    References(39)

    [1] WEI J, YANG L, MA Z et al. Review of current high-ZT thermoelectric materials[J]. Journal of Materials Science(2020).

    [2] LIU H T, SUN Q, ZHONG Y et al. Enhanced thermoelectric performance of n-type Nb-doped PbTe by compensating resonant level and inducing atomic disorder[J]. Materials Today Physics(2022).

    [3] SU L, WANG D, WANG S et al. High thermoelectric performance realized through manipulating layered phonon-electron decoupling[J]. Science(2022).

    [4] SUN J, WANG R, CUI W et al. Percolation process-mediated rich defects in hole-doped PbSe with enhanced thermoelectric performance[J]. Chemistry of Materials(2022).

    [5] AN D, WANG J, ZHANG J et al. Retarding Ostwald ripening through Gibbs adsorption and interfacial complexions leads to high-performance SnTe thermoelectrics[J]. Energy & Environmental Science(2021).

    [6] YANG J, LI G, ZHU H et al. Next-generation thermoelectric cooling modules based on high-performance Mg3(Bi,Sb)2 material[J]. Joule(2022).

    [7] CHU J, HUANG J, LIU R et al. Electrode interface optimization advances conversion efficiency and stability of thermoelectric devices[J]. Nature Communications(2020).

    [8] BJØRK R. The universal influence of contact resistance on the efficiency of a thermoelectric generator[J]. Journal of Electronic Materials(2015).

    [9] ZHANG Q H, BAI S Q, CHEN L D. Technologies and applications of thermoelectric devices: current status, challenges and prospects[J]. Journal of Inorganic Materials(2019).

    [10] WU X, HAN Z, ZHU Y et al. A general design strategy for thermoelectric interface materials in n-type Mg3Sb1.5Bi0.5 single leg used in TEGs[J]. Acta Materialia(2022).

    [11] HU X K, ZHANG S M, ZHAO F et al. Thermoelectric device: contact interface and interface materials[J]. Journal of Inorganic Materials(2019).

    [12] SAKANO M, HIRAYAMA M, TAKAHASHI T et al. Radial spin texture in elemental tellurium with chiral crystal structure[J]. Physical Review Letters(2020).

    [13] REITZ J R. Electronic band structure of selenium and tellurium[J]. Physical Review(1957).

    [15] LIN S Q, LI W, ZHANG X Y et al. Sb induces both doping and precipitation for improving the thermoelectric performance of elemental Te.[J]. Inorganic Chemistry Frontiers(2017).

    [16] RAO F, DING K, ZHOU Y et al. Reducing the stochasticity of crystal nucleation to enable subnanosecond memory writing[J]. Science(2017).

    [17] GUO J, FAN W, WANG Y et al. Study on improving comprehensive property of Te-based thermoelectric joint[J]. Journal of Alloys and Compounds(2021).

    [19] HE Z, CHANG L G, LIN Y et al. Real-time visualization of solid-phase ion migration kinetics on nanowire monolayer[J]. Journal of the American Chemical Society(2020).

    [20] TASHIRO M, SUKENAGA S, IKEMOTO K et al. Interfacial reactions between pure Cu, Ni, and Ni-Cu alloys and p-type Bi2Te3 bulk thermoelectric material[J]. Journal of Materials Science(2021).

    [21] FERRERES X R, AMINORROAYA YAMINI S, NANCARROW M et al. One-step bonding of Ni electrode to n-type PbTe—a step towards fabrication of thermoelectric generators[J]. Materials & Design(2016).

    [22] ZHANG J, WEI P, ZHANG H et al. Enhanced contact performance and thermal tolerance of Ni/Bi2Te3 joints for Bi2Te3-based thermoelectric devices[J]. ACS Applied Materials & Interfaces(2023).

    [23] CHEN J, FAN W, WANG Y et al. Improvement of stability in a Mg2Si-based thermoelectric single-leg device via Mg50Si15Ni50 barrier[J]. Journal of Alloys and Compounds(2022).

    [24] WANG Y, CHEN J, JIANG Y et al. Suppression of interfacial diffusion in Mg3Sb2 thermoelectric materials through an Mg4.3Sb3Ni/Mg3.2Sb2Y0.05/Mg4.3Sb3Ni-graded structure[J]. ACS Applied Materials & Interfaces(2022).

    [25] CHEN S, CHEN J, FAN W et al. Improvement of contact and bonding performance of Mg2Si/Mg2SiNi3 thermoelectric joints by optimizing the concentration gradient of Mg.[J]. Journal of Electronic Materials(2022).

    [26] SUN Y, YIN L, ZHANG Z et al. Low contact resistivity and excellent thermal stability of p-type YbMg0.8Zn1.2Sb2/Fe-Sb junction for thermoelectric applications[J]. Acta Materialia(2022).

    [27] SUN Z, CHEN X, ZHANG J et al. Achieving reliable CoSb3 based thermoelectric joints with low contact resistivity using a high-entropy alloy diffusion barrier layer[J]. Journal of Materiomics(2022).

    [28] ARVHULT C M, GUÉNEAU C, GOSSÉ S et al. Thermodynamic assessment of the Ni-Te system[J]. Journal of Materials Science(2019).

    [29] LIAO C N, LEE C H, CHEN W J. Effect of interfacial compound formation on contact resistivity of soldered junctions between bismuth telluride-based thermoelements and copper[J]. Electrochemical and Solid-State Letters(2007).

    [30] XIA H, CHEN C L, DRYMIOTIS F et al. Interfacial reaction between Nb foil and n-type PbTe thermoelectric materials during thermoelectric contact fabrication[J]. Journal of Electronic Materials(2014).

    [31] LI C C, DRYMIOTIS F, LIAO L L et al. Interfacial reactions between PbTe-based thermoelectric materials and Cu and Ag bonding materials[J]. Journal of Materials Chemistry C(2015).

    [32] WANG X, GU M, LIAO J C et al. High temperature interfacial stability of Fe/Bi0.5Sb1.5Te3 thermoelectric elements[J]. Journal of Inorganic Materials(2021).

    [33] TSUTOMU K, HIROMASA T, SATO H K et al. Enhancement of average thermoelectric figure of merit by increasing the grain-size of Mg3.2Sb1.5Bi0.49Te0.01[J]. Applied Physics Letters(2018).

    [34] AN D, CHEN S, LU Z et al. Low thermal conductivity and optimized thermoelectric properties of p-type Te-Sb2Se3: synergistic effect of doping and defect engineering[J]. ACS Applied Materials & Interfaces(2019).

    [35] NORÉN L, TING V, WITHERS R L et al. An electron and X-ray diffraction investigation of Ni1+xTe2 and Ni1+xSe2CdI2/NiAs type solid solution phases[J]. Journal of Solid State Chemistry(2001).

    [36] ANDERSON J S. Nonstoichiometric compounds: a critique of current structural views[J]. Proceedings of the Indian Academy of Sciences - Chemical Sciences(1984).

    [37] CHEN J, ZHANG Y, YU Z et al. Interface growth and void formation in Sn/Cu and Sn0.7Cu/Cu systems[J]. Applied Sciences(2018).

    [38] LIN Y, WU X, LI Y et al. Revealing multi-stage growth mechanism of Kirkendall voids at electrode interfaces of Bi2Te3-based thermoelectric devices with in-situ TEM technique[J]. Nano Energy(2022).

    [39] LIU R, XING Y, LIAO J et al. Thermal-inert and ohmic-contact interface for high performance half-Heusler based thermoelectric generator[J]. Nature Communications(2022).

    [40] BALL R G J, DICKINSON S, CORDFUNKE E H P et al[J]. Thermochemical data acquisition. Part II. Luxembourg: Commission of the European Communities.

    [41] BARIN I[J]. Thermochemical data of pure substances.

    Tools

    Get Citation

    Copy Citation Text

    Xin MIAO, Shiqiang YAN, Jindou WEI, Chao WU, Wenhao FAN, Shaoping CHEN. Interface Layer of Te-based Thermoelectric Device: Abnormal Growth and Interface Stability[J]. Journal of Inorganic Materials, 2024, 39(8): 903

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jan. 30, 2024

    Accepted: --

    Published Online: Dec. 12, 2024

    The Author Email: Shaoping CHEN (chenshaoping@tyut.edu.cn)

    DOI:10.15541/jim20240057

    Topics