Laser & Optoelectronics Progress, Volume. 62, Issue 4, 0428006(2025)

Remote Sensing Scene Classification Method Based on Multi-Scale Graph Convolution Context Feature Aggregation

Baolan Chen1,2,3、*, Huawang Li1,2,3, and Yinxiao Wang1,2,3
Author Affiliations
  • 1Innovation Academy for Microsatellites, Chinese Academy of Sciences, Shanghai 201204, China
  • 2School of Information Science and Technology, ShanghaiTech University, Shanghai 201210, China
  • 3University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    Figures & Tables(10)
    Overall framework of MCAGCN
    Examples of AID dataset
    Examples of NWPU-RESISC45 dataset
    Confusion matrix of AID dataset at 50% training ratio
    Confusion matrix of NWPU-RESISC45 dataset at 20% training ratio
    Results of ablation experiments for hyperparameter settings
    • Table 1. Experience results on AID dataset

      View table

      Table 1. Experience results on AID dataset

      TypeMethod20% Training ratio50% Training ratio
      CNN-basedGoogleNet2883.4486.39
      VGG16686.5989.64
      ResNet50792.5795.96
      ConvNeXt-T2294.4396.57
      ACNet2994.3896.76
      LSMNet3094.3196.78
      Transformer-basedViT-B1393.7495.84
      Swin-T1494.5696.92
      T2T-ViT-l23194.3996.29
      PVT-V2-B03293.5296.27
      EMTCAL1594.6996.41
      GCN-basedDFAGCN1994.88
      ViG-S2193.2296.34
      MCAGCN (proposed)95.6497.58
    • Table 2. Experience results on NWPU-RESISC45 dataset

      View table

      Table 2. Experience results on NWPU-RESISC45 dataset

      TypeMethod10% Training Ratio20% Training Ratio
      CNN-basedGoogleNet2876.1978.48
      VGG16676.4779.79
      ResNet50788.4891.86
      ConvNeXt-T2291.1293.34
      ACNet2991.0992.42
      LSMNet3090.8093.16
      Transformer-basedViT-B1390.0592.61
      Swin-T1490.8493.18
      T2T-ViT-l23190.6293.19
      PVT-V2-B03289.7292.95
      EMTCAL1591.6393.65
      GCN-basedDFAGCN1989.29
      ViG-S2191.6193.52
      MCAGCN (proposed)92.2494.37
    • Table 3. Results of ablation experiments for modules

      View table

      Table 3. Results of ablation experiments for modules

      ModelModuleOA /%Parameter /MbitFLOPs /Gbit
      Net 1IFEM96.5728.774.46
      Net 2IFEM+DAM96.7531.504.63
      Net 3IFEM+MFAM97.0834.604.98
      Net 4IFEM+CIEM+DAM97.1437.797.41
      Net 5IFEM+CIEM+MFAM97.3840.897.76
      Net 6IFEM+CIEM+MFAM+LSLoss97.5840.897.76
    • Table 4. Results of ablation experiments for backbone

      View table

      Table 4. Results of ablation experiments for backbone

      ModelOA /%Parameters /MbitFLOPs /Gbit
      ResNet1895.5111.191.82
      MCAGCN (ResNet18)96.4316.313.29
      Swin-T96.9228.264.37
      MCAGCN (Swin-T)97.3539.827.67
      ConvNeXt-T96.5728.774.46
      MCAGCN (ConvNeXt-T)97.5840.897.76
    Tools

    Get Citation

    Copy Citation Text

    Baolan Chen, Huawang Li, Yinxiao Wang. Remote Sensing Scene Classification Method Based on Multi-Scale Graph Convolution Context Feature Aggregation[J]. Laser & Optoelectronics Progress, 2025, 62(4): 0428006

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Remote Sensing and Sensors

    Received: Jun. 12, 2024

    Accepted: Jul. 25, 2024

    Published Online: Feb. 18, 2025

    The Author Email:

    DOI:10.3788/LOP241466

    CSTR:32186.14.LOP241466

    Topics