Chinese Journal of Lasers, Volume. 44, Issue 12, 1201002(2017)
All-Solid-State Tunable Ti∶Sapphire Laser with High-Power and Single-Frequency at 900 nm
[1] [1] Wang D W, Zhu S Y, Evers J, et al. High-frequency light reflector via low-frequency light control[J]. Physical Review A, 2015, 91: 011801.
[2] [2] Schultz J T, Abend S, Doring D, et al. Coherent 455 nm beam production in a cesium vapor[J]. Optics Letters, 2009, 34(15): 2321-2323.
[3] [3] Wang D, Hu L Y, Pang X M, et al. Quadripartite entanglement from a double three-level-type-atom model[J]. American Physical Society, 2013, 88(4): 042314.
[4] [4] Wang D, Wu J Z, Zhang J X. Optical control of light propagation in photonic crystal based on electromagnetically induced transparency[J]. Chinese Physics B, 2016, 25(6): 064202.
[5] [5] Li F Q, Li H J, Lu H D. Realization of a tunable 455.5-nm laser with low intensity noise by intracavity frequency-doubled Ti∶sapphire laser[J]. IEEE Journal of Quantum Electronics, 2016, 52(2): 1700106.
[6] [6] Auzitnsh M, Ferber R, Gahbauer F, et al. Cascade coherence transfer and magneto-optical resonances at 455 nm excitation of cesium[J]. Optics Communication, 2011, 284(12): 2863-2871.
[7] [7] Auchter C, Noel T W, Hoffman M R, et al. Measurement of the branching fractions and lifetime of the 5D5/2 level of Ba2+[J]. Atomic Physics, 2014: 060501.
[10] [10] Cruz L S, Cruz F C. External power-enhancement cavity versus intracavity frequency doubling of Ti∶sapphire lasers using BIBO[J]. Optics Express, 2007, 15(19): 11913-11921.
[11] [11] Li Menglong, Gao Long, Shi Wenzong, et al. Progress in all-solid-state single-frequency lasers[J]. Laser and Optoelectronics Progress, 2016, 53(8): 080003.
[13] [13] Zhang Xiaocui, Si Jiliang, Xu Min, et al. Growth method, optical and laser properties of titanium-doped sapphire crystals[J]. Chinese J Lasers, 2014, 41(5): 0506001.
[14] [14] Yin Q W, Lu H D, Peng K C. Investigation of the thermal lens effect of the TGG crystal in high-power frequency-doubled laser with single frequency operation[J]. Optics Express, 2015, 23(4): 4981-4990.
[15] [15] Li Huijuan, Zhang Miao, Li Fengqin. High-power single-frequency 461 nm generation from an intracavity doubling of Ti∶sapphire laser with LBO[J]. Chinese J Lasers, 2016, 43(3): 0302003.
[16] [16] Guo Yongrui, Lu Huadong, Su Jing, et al. Investigation of hundred-watt all-solid-state continuous-wave single-frequency 1064 nm laser[J]. Chinese J Lasers, 2017, 44(6): 0601007.
[17] [17] Yin Qiwei, Lu Huadong. Influence of curvature radius of cavity mirrors on performance of high-power single-frequency laser[J]. Laser and Optoelectronics Progress, 2016, 53(7): 071401.
[18] [18] Laporta P, Brussard M. Design criteria for mode size optimization in diode-pumped solid state lasers[J]. IEEE Journal of Auantum Electronics, 1991, 27(10): 2319-2326.
[19] [19] Fan T Y, Cordova-Plaza A, Digonnet M J F, et al. Nd∶MgO∶LiNbO3 spectroscopy and laser devices[J]. Optical Society of America, 1986, 3(1): 140-148.
Get Citation
Copy Citation Text
Zhang Lianping, Yin Guoling, Li Fengqin, Shi Zhu, Lu Huadong. All-Solid-State Tunable Ti∶Sapphire Laser with High-Power and Single-Frequency at 900 nm[J]. Chinese Journal of Lasers, 2017, 44(12): 1201002
Category: laser devices and laser physics
Received: Jun. 23, 2017
Accepted: --
Published Online: Dec. 11, 2017
The Author Email: Fengqin Li (lfq@sxu.edu.cn)