Journal of Synthetic Crystals, Volume. 50, Issue 7, 1200(2021)
Planar Diffractive Lenses with Artificial Micro/Nano-Structures
[1] [1] ABBE E. A contribution to the theory of the microscope and the nature of microscopic vision[EB/OL].
[2] [2] RAYLEIGH L. On the manufacture and theory of diffraction-gratings[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1874, 47(310): 81-93.
[3] [3] POON T C, MOTAMEDI M. Optical/digital incoherent image processing for extended depth of field[J]. Applied Optics, 1987, 26(21): 4612-4615.
[4] [4] ROBERTS, PUBLISHERS C. Introduction to fourier optics[M]. USA:Greenwoood Village, CO, 2005.
[5] [5] NOVOTNY L, HECHT B. Theoretical methods in nano-optics[M]//Principles of Nano-Optics. Cambridge: Cambridge University Press, 2012: 500-522.
[6] [6] SYNGE E H. XXXVIII. A suggested method for extending microscopic resolution into the ultra-microscopic region[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1928, 6(35): 356-362.
[7] [7] BEK A, VOGELGESANG R, KERN K. Apertureless scanning near field optical microscope with sub-10nm resolution[J]. Review of Scientific Instruments, 2006, 77(4): 043703.
[8] [8] PENDRY J B. Negative refraction makes a perfect lens[J]. Physical Review Letters, 2000, 85(18): 3966-3969.
[9] [9] LUO X G, ISHIHARA T. Surface plasmon resonant interference nanolithography technique[J]. Applied Physics Letters, 2004, 84(23): 4780-4782.
[10] [10] WANG Z B, GUO W, LI L, et al. Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope[J]. Nature Communications, 2011, 2: 218.
[11] [11] WANG F, LIU L, YU H, et al. Scanning superlens microscopy for non-invasive large field-of-view visible light nanoscale imaging[J]. Nature Communications, 2016, 7: 13748.
[12] [12] HELL S W, WICHMANN J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy[J]. Optics Letters, 1994, 19(11): 780-782.
[13] [13] KLAR T A, HELL S W. Subdiffraction resolution in far-field fluorescence microscopy[J]. Optics Letters, 1999, 24(14): 954-956.
[14] [14] BETZIG E, PATTERSON G H, SOUGRAT R, et al. Imaging intracellular fluorescent proteins at nanometer resolution[J]. Science, 2006, 313(5793): 1642-1645.
[15] [15] SHROFF H, GALBRAITH C G, GALBRAITH J A, et al. Live-cell photoactivated localization microscopy of nanoscale adhesion dynamics[J]. Nature Methods, 2008, 5(5): 417-423.
[16] [16] PLANCHON T A, GAO L, MILKIE D E, et al. Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination[J]. Nature Methods, 2011, 8(5): 417-423.
[17] [17] RUST M J, BATES M, ZHUANG X W. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM)[J]. Nature Methods, 2006, 3(10): 793-796.
[18] [18] BATES M, HUANG B, DEMPSEY G T, et al. Multicolor super-resolution imaging with photo-switchable fluorescent probes[J]. Science, 2007, 317(5845): 1749-1753.
[19] [19] PFENDER M, ASLAM N, WALDHERR G, et al. Single spin stochastic optical reconstruction microscopy[EB/OL]. https://arxiv.org/abs/1404.1520.
[20] [20] LEE H L D, LORD S J, IWANAGA S, et al. Superresolution imaging of targeted proteins in fixed and living cells using photoactivatable organic fluorophores[J]. Journal of the American Chemical Society, 2010, 132(43): 15099-15101.
[21] [21] HEILEMANN M, VAN DE LINDE S, SCHTTPELZ M, et al. Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes[J]. Angewandte Chemie International Edition, 2008, 47(33): 6172-6176.
[22] [22] GUSTAFSSON M G L. Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution[J]. PNAS, 2005, 102(37): 13081-13086.
[23] [23] DERTINGER T, HEILEMANN M, VOGEL R, et al. Superresolution optical fluctuation imaging with organic dyes[J]. Angewandte Chemie, 2010, 122(49): 9631-9633.
[24] [24] BRETSCHNEIDER S, EGGELING C, HELL S W. Breaking the diffraction barrier in fluorescence microscopy by optical shelving[J]. Physical Review Letters, 2007, 98(21): 218103.
[25] [25] XIE X S, CHEN Y Z, YANG K, et al. Harnessing the point-spread function for high-resolution far-field optical microscopy[J]. Physical Review Letters, 2014, 113(26): 263901.
[26] [26] LI X P, CAO Y Y, GU M. Superresolution-focal-volume induced 3.0 Tbytes/disk capacity by focusing a radially polarized beam[J]. Optics Letters, 2011, 36(13): 2510-2512.
[27] [27] DAVIS B J, KARL W C, SWAN A K, et al. Capabilities and limitations of pupil-plane filters for superresolution and image enhancement[J]. Optics Express, 2004, 12(17): 4150-4156.
[28] [28] OSHEROVICH E, SHECHTMAN Y, SZAMEIT A, et al. Sparsity-based single-shot subwavelength coherent diffractive imaging[J]. 2012: CF3C.7.
[29] [29] YANG X S, XIE H, ALONAS E, et al. Mirror enhanced STED super-resolution microscopy[J]. Light: Science & Applications, 2017: ATh1A.2.
[30] [30] HAO X, KUANG C F, GU Z T, et al. From microscopy to nanoscopy via visible light[J]. Light: Science & Applications, 2013, 2(10): e108.
[31] [31] SHEPPARD C J, CHOUDHURY A. Annular pupils, radial polarization, and superresolution[J]. Applied Optics, 2004, 43(22): 4322-4327.
[32] [32] MARTNEZ-CORRAL M, ANDRS P, ZAPATA-RODRGUEZ C J, et al. Three-dimensional superresolution by annular binary filters[J]. Optics Communications, 1999, 165(4/5/6): 267-278.
[33] [33] ROGERS E T F, LINDBERG J, ROY T, et al. A super-oscillatory lens optical microscope for subwavelength imaging[J]. Nature Materials, 2012, 11(5): 432-435.
[34] [34] QIN F, HUANG K, WU J F, et al. A supercritical lens optical label-free microscopy: sub-diffraction resolution and ultra-long working distance[J]. Advanced Materials, 2017, 29(8): 1602721.
[35] [35] GAZIT S, SZAMEIT A, ELDAR Y C, et al. Super-resolution and reconstruction of sparse sub-wavelength images[J]. Optics Express, 2009, 17(26): 23920-23946.
[36] [36] SHECHTMAN Y, GAZIT S, SZAMEIT A, et al. Super-resolution and reconstruction of sparse images carried by incoherent light[J]. Optics Letters, 2010, 35(8): 1148-1150.
[37] [37] WANG Z, YUAN G H, YANG M, et al. Exciton-enabled meta-optics in two-dimensional transition metal dichalcogenides[J]. Nano Letters, 2020, 20(11): 7964-7972.
[38] [38] QIN F, HUANG K, WU J F, et al. Shaping a subwavelength needle with ultra-long focal length by focusing azimuthally polarized light[J]. Scientific Reports, 2015, 5: 9977.
[39] [39] YUAN G H, ROGERS E T F, ROY T, et al. Planar super-oscillatory lens for sub-diffraction optical needles at violet wavelengths[J]. Scientific Reports, 2014, 4: 6333.
[40] [40] HUANG F M, KAO T S, FEDOTOV V A, et al. Nanohole array as a lens[J]. Nano Letters, 2008, 8(8): 2469-2472.
[41] [41] ROGERS E T F, SAVO S, LINDBERG J, et al. Super-oscillatory optical needle[J]. Applied Physics Letters, 2013, 102(3): 031108.
[42] [42] ROY T, ROGERS E T F, ZHELUDEV N I. Sub-wavelength focusing meta-lens[J]. Optics Express, 2013, 21(6): 7577-7582.
[43] [43] YE H P, QIU C W, HUANG K, et al. Creation of a longitudinally polarized subwavelength hotspot with an ultra-thin planar lens: vectorial Rayleigh-Sommerfeld method[J]. Laser Physics Letters, 2013, 10(6): 065004.
[44] [44] ZHAN Q W. Cylindrical vector beams: from mathematical concepts to applications[J]. Advances in Optics and Photonics, 2009, 1(1): 1.
[45] [45] HUANG K, SHI P, CAO G W, et al. Vector-vortex Bessel-Gauss beams and their tightly focusing properties[J]. Optics Letters, 2011, 36(6): 888-890.
[46] [46] BORN M, WOLF E. Principles of Optics[M]. UK: CUP Archive, Elsevier ,2000.
[47] [47] KHORASANINEJAD M, CHEN W T, DEVLIN R C, et al. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging[J]. Science, 2016, 352(6290): 1190-1194.
[48] [48] MAO Y H, ZHAO D, YAN S, et al. A vacuum ultraviolet laser with a submicrometer spot for spatially resolved photoemission spectroscopy[J]. Light: Science & Applications, 2021, 10: 22.
[49] [49] ZHAO X N, HU J P, LIN Y, et al. Ultra-broadband achromatic imaging with diffractive photon sieves[J]. Scientific Reports, 2016, 6: 28319.
[50] [50] HUANG K, LIU H, GARCIA-VIDAL F J, et al. Ultrahigh-capacity non-periodic photon sieves operating in visible light[J]. Nature Communications, 2015, 6: 7059.
[51] [51] LIU Y J, LIU H, LEONG E S P, et al. Fractal holey metal microlenses with significantly suppressed side lobes and high-order diffractions in focusing[J]. Advanced Optical Materials, 2014, 2(5):487-492.
[52] [52] ISHII S, SHALAEV V M, KILDISHEV A V. Holey-metal lenses: sieving single modes with proper phases[J]. Nano Letters, 2013, 13(1): 159-163.
[53] [53] KIPP L, SKIBOWSKI M, JOHNSON R L, et al. Sharper images by focusing soft X-rays with photon sieves[J]. Nature, 2001, 414(6860): 184-188.
[54] [54] ZHANG Q, DONG F L, LI H X, et al. High-numerical-aperture dielectric metalens for super-resolution focusing of oblique incident light[J]. Advanced Optical Materials, 2020, 8(9): 1901885.
[55] [55] ZANG W, YUAN Q, CHEN R, et al. Chromatic dispersion manipulation based on metalenses[J]. Advanced Materials (Deerfield Beach, Fla), 2020, 32(27): e1904935.
[56] [56] CHEN W T, ZHU A Y, SISLER J, et al. A broadband achromatic polarization-insensitive metalens consisting of anisotropic nanostructures[J]. Nature Communications, 2019, 10: 355.
[57] [57] WANG S, WU P C, SU V C, et al. A broadband achromatic metalens in the visible[J]. Nature Nanotechnology, 2018, 13(3): 227-232.
[58] [58] CHEN W T, ZHU A Y, SANJEEV V, et al. A broadband achromatic metalens for focusing and imaging in the visible[J]. Nature Nanotechnology, 2018, 13(3): 220-226.
[59] [59] CHEN W T, ZHU A Y, KHORASANINEJAD M, et al. Immersion meta-lenses at visible wavelengths for nanoscale imaging[J]. Nano Letters, 2017, 17(5): 3188-3194.
[60] [60] AIETA F, GENEVET P, KATS M A, et al. Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces[J]. Nano Letters, 2012, 12(9): 4932-4936.
[61] [61] HUANG K, YE H P, TENG J H, et al. Optimization-free superoscillatory lens using phase and amplitude masks[J]. Laser & Photonics Reviews, 2014, 8(1): 152-157.
[62] [62] YE H P, WAN C, HUANG K, et al. Creation of vectorial bottle-hollow beam using radially or azimuthally polarized light[J]. Optics Letters, 2014, 39(3): 630-633.
[63] [63] HUANG K, SHI P, KANG X L, et al. Design of DOE for generating a needle of a strong longitudinally polarized field[J]. Optics Letters, 2010, 35(7): 965-967.
[64] [64] HE J, ZHUANG J C, DING L, et al. Optimization-free customization of optical tightly focused fields: uniform needles and hotspot chains[J]. Applied Optics, 2021, 60(11): 3081-3087.
[65] [65] WANG H F, SHI L P, LUKYANCHUK B, et al. Creation of a needle of longitudinally polarized light in vacuum using binary optics[J]. Nature Photonics, 2008, 2(8): 501-505.
[66] [66] GHALEHBEYGI O T, WILLS A G, ROUTLEY B S, et al. Gradient-based optimization for efficient exposure planning in maskless lithography[C]//2017: 033507.
[67] [67] MENON R, GIL D, BARBASTATHIS G, et al. Photon-sieve lithography[J]. Josa A, 2005, 22(2): 342-345.
[68] [68] HUANG K, QIN F, LIU H, et al. Planar diffractive lenses: fundamentals, functionalities, and applications[J]. Advanced Materials (Deerfield Beach, Fla), 2018, 30(26): e1704556.
[69] [69] ROGERS E T F, ZHELUDEV N I. Optical super-oscillations: sub-wavelength light focusing and super-resolution imaging[J]. Journal of Optics, 2013, 15(9): 094008.
[70] [70] DENNIS M R, HAMILTON A C, COURTIAL J. Superoscillation in speckle patterns[J]. Optics Letters, 2008, 33(24): 2976.
[71] [71] BERRY M V, MOISEYEV N. Superoscillations and supershifts in phase space: Wigner and Husimi function interpretations[J]. Journal of Physics A: Mathematical and Theoretical, 2014, 47(31): 315203.
[72] [72] BERRY M V, DENNIS M R. Natural superoscillations in monochromatic waves in D dimensions[J]. Journal of Physics A: Mathematical and Theoretical, 2009, 42(2): 022003.
[73] [73] FERREIRA P J S G, KEMPF A. Superoscillations: faster than the nyquist rate[J]. IEEE Transactions on Signal Processing, 2006, 54(10): 3732-3740.
[74] [74] GAN Z S, CAO Y Y, EVANS R A, et al. Three-dimensional deep sub-diffraction optical beam lithography with 9 nm feature size[J]. Nature Communications, 2013, 4: 2061.
[75] [75] GISSIBL T, THIELE S, HERKOMMER A, et al. Two-photon direct laser writing of ultracompact multi-lens objectives[J]. Nature Photonics, 2016, 10(8): 554-560.
[76] [76] SHEPPARD C J R. Resolution and super-resolution[J]. Microscopy Research and Technique, 2017, 80(6): 590-598.
[77] [77] SHEPPARD C J R, ROTH S, HEINTZMANN R, et al. Interpretation of the optical transfer function: significance for image scanning microscopy[J]. Optics Express, 2016, 24(24): 27280-27287.
[78] [78] LIU L B, DIAZ F, WANG L, et al. Superresolution along extended depth of focus with binary-phase filters for the Gaussian beam[J]. Journal of the Optical Society of America A, 2008, 25(8): 2095.
[79] [79] CHEN X Z, HUANG L L, MUHLENBERND H, et al. Dual-polarity plasmonic metalens for visible light[J]. Nature Communications, 2012, 3: 1198.
[80] [80] YUAN G H, ROGERS E T, ZHELUDEV N I. Achromatic super-oscillatory lenses with sub-wavelength focusing[J]. Light, Science & Applications, 2017, 6(9): e17036.
[81] [81] ROY T, ROGERS E T F, YUAN G H, et al. Point spread function of the optical needle super-oscillatory lens[J]. Applied Physics Letters, 2014, 104(23): 231109.
[82] [82] WANG J M, CHEN W B, ZHAN Q W. Engineering of high purity ultra-long optical needle field through reversing the electric dipole array radiation[J]. Optics Express, 2010, 18(21): 21965-21972.
[83] [83] LIN J, YIN K, LI Y D, et al. Achievement of longitudinally polarized focusing with long focal depth by amplitude modulation[J]. Optics Letters, 2011, 36(7): 1185-1187.
[84] [84] HU K L, CHEN Z Y, PU J X. Generation of super-length optical needle by focusing hybridly polarized vector beams through a dielectric interface[J]. Optics Letters, 2012, 37(16): 3303-3305.
[85] [85] CHEN Z, SEGEV M, CHRISTODOULIDES D N. Optical spatial solitons: historical overview and recent advances[J]. Reports on Progress in Physics Physical Society (Great Britain), 2012, 75(8): 086401.
[86] [86] LIU Y M, BARTAL G, GENOV D A, et al. Subwavelength discrete solitons in nonlinear metamaterials[J]. Physical Review Letters, 2007, 99(15): 153901.
[87] [87] HAN S, XIONG Y, GENOV D, et al. Ray optics at a deep-subwavelength scale: a transformation optics approach[J]. Nano Letters, 2008, 8(12): 4243-4247.
[88] [88] HUANG C M, SHI X L, YE F W, et al. Tunneling inhibition for subwavelength light[J]. Optics Letters, 2013, 38(15): 2846-2849.
[89] [89] YE F, MIHALACHE D, HU B, et al. Subwavelength plasmonic lattice solitons in arrays of metallic nanowires[J]. Physical Review Letters, 2010, 104(10): 106802.
[90] [90] BERRY M V. Exact nonparaxial transmission of subwavelength detail using superoscillations[J]. Journal of Physics A: Mathematical and Theoretical, 2013, 46(20): 205203.
[91] [91] BERRY M V, POPESCU S. Evolution of quantum superoscillations and optical superresolution without evanescent waves[J]. Journal of Physics A: Mathematical and General, 2006, 39(22): 6965-6977.
[92] [92] AVAYU O, ALMEIDA E, PRIOR Y, et al. Composite functional metasurfaces for multispectral achromatic optics[J]. Nature Communications, 2017, 8: 14992.
[93] [93] ZHENG X R, JIA B H, LIN H, et al. Highly efficient and ultra-broadband graphene oxide ultrathin lenses with three-dimensional subwavelength focusing[J]. Nature Communications, 2015, 6: 8433.
[94] [94] CAO G Y, LIN H, FRASER S, et al. Resilient graphene ultrathin flat lens in aerospace, chemical, and biological harsh environments[J]. ACS Applied Materials & Interfaces, 2019, 11(22): 20298-20303.
[95] [95] LIN H, XU Z Q, CAO G Y, et al. Diffraction-limited imaging with monolayer 2D material-based ultrathin flat lenses[J]. Light: Science & Applications, 2020, 9: 137.
[96] [96] BERESNA M, GECEVICˇIUS M, KAZANSKY P G. Polarization sensitive elements fabricated by femtosecond laser nanostructuring of glass[J]. Optical Materials Express, 2011, 1(4): 783-795.
[97] [97] YU A P, CHEN G, ZHANG Z H, et al. Creation of sub-diffraction longitudinally polarized spot by focusing radially polarized light with binary phase lens[J]. Scientific Reports, 2016, 6: 38859.
[98] [98] CHEN G, LI Y Y, YU A P, et al. Super-oscillatory focusing of circularly polarized light by ultra-long focal length planar lens based on binary amplitude-phase modulation[J]. Scientific Reports, 2016, 6: 29068.
[99] [99] KRAVETS V G, SCHEDIN F, JALIL R, et al. Singular phase nano-optics in plasmonic metamaterials for label-free single-molecule detection[J]. Nature Materials, 2013, 12(4): 304-309.
[100] [100] QIN F, LIU B Q, ZHU L W, et al. Π-phase modulated monolayer supercritical lens[J]. Nature Communications, 2021, 12: 32.
[101] [101] CHAPMAN H N, NUGENT K A. Coherent lensless X-ray imaging[J]. Nature Photonics, 2010, 4(12): 833-839.
[102] [102] EDER S D, GUO X, KALTENBACHER T, et al. Focusing of a neutral helium beam with a photon-sieve structure[J]. Physical Review A, 2015, 91(4):043608.
[103] [103] BARR M, FAHY A, MARTENS J, et al. Unlocking new contrast in a scanning helium microscope[J]. Nature Communications, 2016, 7: 10189.
[104] [104] KHORASANINEJAD M, CHEN W T, ZHU A Y, et al. Visible wavelength planar metalenses based on titanium dioxide[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2017, 23(3): 43-58.
[105] [105] LALANNE P, CHAVEL P. Metalenses at visible wavelengths: past, present, perspectives[J]. Laser & Photonics Reviews, 2017, 11(3): 1600295.
[106] [106] NI X J, ISHII S, KILDISHEV A V, et al. Ultra-thin, planar, Babinet-inverted plasmonic metalenses[J]. Light: Science & Applications, 2013, 2(4): e72.
[107] [107] ARBABI A, ARBABI E, KAMALI S M, et al. Miniature optical planar camera based on a wide-angle metasurface doublet corrected for monochromatic aberrations[J]. Nature Communications, 2016, 7: 13682.
[108] [108] ARBABI A, HORIE Y, BAGHERI M, et al. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission[J]. Nature Nanotechnology, 2015, 10(11): 937-943.
[109] [109] ARBABI A, HORIE Y, BALL A J, et al. Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays[J]. Nature Communications, 2015, 6: 7069.
[110] [110] TANG D L, WANG C T, ZHAO Z Y, et al. Ultrabroadband superoscillatory lens composed by plasmonic metasurfaces for subdiffraction light focusing[J]. Laser & Photonics Reviews, 2015, 9(6): 713-719.
[111] [111] YOUNG M. Zone plates and their aberrations[J]. JOSA, 1972, 62(8): 972-976.
[112] [112] GROEVER B, CHEN W T, CAPASSO F. Meta-lens doublet in the visible region[J]. Nano Letters, 2017, 17(8): 4902-4907.
[113] [113] ENGELBERG J, ZHOU C, MAZURSKI N, et al. Near-IR wide field-of-view Huygens metalens for outdoor imaging applications[J]. 2019: FTh3M.8.
[114] [114] SHALAGINOV M Y, AN S, YANG F, et al. Single-element diffraction-limited fisheye metalens[J]. Nano Letters, 2020, 20(10): 7429-7437.
[115] [115] HUANG K, LIU H, SI G Y, et al. Photon-nanosieve for ultrabroadband and large-angle-of-view holograms[J]. Laser & Photonics Reviews, 2017, 11(3): 1700025.
[116] [116] LI Y, LI X, PU M, et al. Achromatic flat optical components via compensation between structure and material dispersions[J]. Scientific Reports, 2016, 6: 19885.
[117] [117] LIN D M, HOLSTEEN A L, MAGUID E, et al. Photonic multitasking interleaved Si nanoantenna phased array[J]. Nano Letters, 2016, 16(12): 7671-7676.
[118] [118] ARBABI E, ARBABI A, KAMALI S M, et al. Multiwavelength metasurfaces through spatial multiplexing[J]. Scientific Reports, 2016, 6: 32803.
[119] [119] AIETA F, KATS M A, GENEVET P, et al. Multiwavelength achromatic metasurfaces by dispersive phase compensation[J]. Science, 2015, 347(6228): 1342-1345.
[120] [120] WANG P, MOHAMMAD N, MENON R. Chromatic-aberration-corrected diffractive lenses for ultra-broadband focusing[J]. Scientific Reports, 2016, 6: 21545.
[121] [121] WANG S M, WU P C, SU V C, et al. Broadband achromatic optical metasurface devices[J]. Nature Communications, 2017, 8: 187.
[122] [122] HSIAO H H, CHEN Y H, LIN R J, et al. Integrated-resonant units: integrated resonant unit of metasurfaces for broadband efficiency and phase manipulation[J]. Advanced Optical Materials, 2018, 6(12): 1870047.
[123] [123] ZHOU H P, CHEN L, SHEN F, et al. Broadband achromatic metalens in the midinfrared range[J]. Physical Review Applied, 2019, 11(2): 024066.
[124] [124] SHRESTHA S, OVERVIG A C, LU M, et al. Broadband achromatic dielectric metalenses[J]. Light: Science & Applications, 2018, 7: 85.
[125] [125] KHORASANINEJAD M, CHEN W T, ZHU A Y, et al. Multispectral chiral imaging with a metalens[J]. Nano Letters, 2016, 16(7): 4595-4600.
[126] [126] ZHU X F, FANG W, LEI J, et al. Supercritical lens array in a centimeter scale patterned with maskless UV lithography[J]. Optics Letters, 2020, 45(7): 1798-1801.
Get Citation
Copy Citation Text
HE Jun, HUANG Kun, ZHUANG Jicheng. Planar Diffractive Lenses with Artificial Micro/Nano-Structures[J]. Journal of Synthetic Crystals, 2021, 50(7): 1200
Category:
Received: Apr. 20, 2021
Accepted: --
Published Online: Dec. 7, 2021
The Author Email:
CSTR:32186.14.