Chinese Journal of Lasers, Volume. 52, Issue 6, 0610003(2025)

Depth Estimation Method for Single‐Photon LiDAR Under Low Signal‐to‐Noise Ratio

Liangliang Bai1,2, Mingjun Wang1,3,4、*, Jihua Yu1, Yiming Zhou1, and Xin Gao1
Author Affiliations
  • 1School of Automation and Information Engineering, Xi’an University of Technology, Xi’an 710048, Shaanxi , China
  • 2School of Information Engineering, Xinjiang Institute of Engineering, Urumqi 830091, Xinjiang , China
  • 3Xi’an Key Laboratory of Wireless Optical Communication and Network Research, Xi’an 710048, Shaanxi , China
  • 4School of Physics and Telecommunications Engineering, Shaanxi University of Technology, Hanzhong 723001, Shaanxi , China
  • show less
    Figures & Tables(11)
    Photon-counting LiDAR depth map reconstruction algorithm
    Time-domain filtering method. (a) Detection time of single pixel; (b) adjacent photon detection time difference; (c) photon counts in different time windows
    Structure of BP neural network
    Simulated processing results for Reindeer scenes at SNR of 0.03. (a) Absolute error map before processing by BP neural network; (b) absolute error map after processing by BP neural network
    Thumbnails of the simulation dataset. (a) Art scene; (b) Bowling scene; (c) Laundry scene; (d) Reindeer scene
    Dept image reconstruction results of each algorithm for the four scenes at SNR of 0.03, where True Depth denotes the ground truth of the depth map provided by the dataset. (a) Reconstructed Art scene; (b) reconstructed Bowling scene; (c) reconstructed Laundry scene; (d) reconstructed Reindeer scene
    Root mean square error of photon counting LiDAR depth image reconstruction using three algorithms under different scenes. (a) Art scene; (b) Bowling scene; (c) Laundry scene; (d) Reindeer scene
    • Table 0. [in Chinese]

      View table

      Table 0. [in Chinese]

      Data: Feature set (k̂i,j,α̂i,j).
      Result: Classifier Net.
      1Initialize wp,qwq,rbq and br randomly, set error threshold et and iteration M.
      2while iteration ≤ Mdo
      3Calculate the output of hidden layer:
      4yq=fp=13wp,qIp+bqf(x)=21-exp-2x-1
      5Calculate the output of output layer:
      6θr=fq=112wq,ryq+brf(x)=x
      7Adjust the weights of output and hidden layer with Levenberg–Marquardt algorithm22
      8wq,r=wq,r+η1Δwq,rwp,q=wp,q+η1Δwp,qη1 is the learning factor;
      9Calculate the mean–square error
      10e=rl̂r-θr2maxr
      11Ifetethen
      12end training;
      13end
      14end
    • Table 1. Parameter setting of BP neural network

      View table

      Table 1. Parameter setting of BP neural network

      ParameterValue
      Learning rate0.001
      Maximum number of training times1000
      Training target error1×10-6
      Maximum validation checks6
      Minimum gradient1×10-10
      Mu decrease ratio0.1
      Mu increase ratio10
    • Table 2. Simulation parameter setting

      View table

      Table 2. Simulation parameter setting

      ParameterValue
      τsp5%
      dsp3
      zmax /m15
      Nr8
      Time bin width /s8×10-12
      Number of time bins12500
      Root mean square time of the laser pulse in time bins33.75
      Twind67.5
    • Table 3. Running time of different algorithms

      View table

      Table 3. Running time of different algorithms

      SceneTime /s
      ShinRappOurs
      Art (555 pixel×695 pixel)25.26675.17069.387
      Bowling (555 pixel×625 pixel)22.51473.81168.373
      Laundry (370 pixel×447 pixel)10.76733.26531.574
      Reindeer (370 pixel×447 pixel)10.57630.91029.970
    Tools

    Get Citation

    Copy Citation Text

    Liangliang Bai, Mingjun Wang, Jihua Yu, Yiming Zhou, Xin Gao. Depth Estimation Method for Single‐Photon LiDAR Under Low Signal‐to‐Noise Ratio[J]. Chinese Journal of Lasers, 2025, 52(6): 0610003

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: remote sensing and sensor

    Received: Aug. 23, 2024

    Accepted: Oct. 22, 2024

    Published Online: Mar. 18, 2025

    The Author Email: Mingjun Wang (wangmingjun@xaut.edu.cn)

    DOI:10.3788/CJL241163

    CSTR:32183.14.CJL241163

    Topics