Photonics Research, Volume. 10, Issue 12, 2816(2022)

Ultrasensitive measurement of angular rotations via a Hermite–Gaussian pointer

Binke Xia1, Jingzheng Huang1,2、*, Hongjing Li1, Miaomiao Liu1, Tailong Xiao1, Chen Fang1, and Guihua Zeng1,3、*
Author Affiliations
  • 1State Key Laboratory of Advanced Optical Communication Systems and Networks, Institute for Quantum Sensing and Information Processing, Shanghai Jiao Tong Universityhttps://ror.org/0220qvk04, Shanghai 200240, China
  • 2e-mail: jzhuang1983@sjtu.edu.cn
  • 3e-mail: ghzeng@sjtu.edu.cn
  • show less
    References

    [1] J. K. Stockton, K. Takase, M. A. Kasevich. Absolute geodetic rotation measurement using atom interferometry. Phys. Rev. Lett., 107, 133001(2011).

    [2] M. Padgett, R. Bowman. Tweezers with a twist. Nat. Photonics, 5, 343-348(2011).

    [3] J. Courtial, D. A. Robertson, K. Dholakia, L. Allen, M. J. Padgett. Rotational frequency shift of a light beam. Phys. Rev. Lett., 81, 4828-4830(1998).

    [4] M. P. J. Lavery, F. C. Speirits, S. M. Barnett, M. J. Padgett. Detection of a spinning object using light’s orbital angular momentum. Science, 341, 537-540(2013).

    [5] Z. Zhang, L. Cen, J. Zhang, J. Hu, F. Wang, Y. Zhao. Rotation velocity detection with orbital angular momentum light spot completely deviated out of the rotation center. Opt. Express, 28, 6859-6867(2020).

    [6] S. Shi, D.-S. Ding, Z.-Y. Zhou, Y. Li, W. Zhang, B.-S. Shi. Magnetic-field-induced rotation of light with orbital angular momentum. Appl. Phys. Lett., 106, 261110(2015).

    [7] F. Pampaloni, J. Enderlein. Gaussian, Hermite-Gaussian, and Laguerre-Gaussian beams: a primer(2004).

    [8] L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, J. P. Woerdman. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys. Rev. A, 45, 8185-8189(1992).

    [9] R. Fickler, R. Lapkiewicz, W. N. Plick, M. Krenn, C. Schaeff, S. Ramelow, A. Zeilinger. Quantum entanglement of high angular momenta. Science, 338, 640-643(2012).

    [10] A. K. Jha, G. S. Agarwal, R. W. Boyd. Supersensitive measurement of angular displacements using entangled photons. Phys. Rev. A, 83, 053829(2011).

    [11] F. Bouchard, P. de la Hoz, G. Björk, R. W. Boyd, M. Grassl, Z. Hradil, E. Karimi, A. B. Klimov, G. Leuchs, J. Řeháček, L. L. Sánchez-Soto. Quantum metrology at the limit with extremal majorana constellations. Optica, 4, 1429-1432(2017).

    [12] V. D’Ambrosio, N. Spagnolo, L. Del Re, S. Slussarenko, Y. Li, L. C. Kwek, L. Marrucci, S. P. Walborn, L. Aolita, F. Sciarrino. Photonic polarization gears for ultra-sensitive angular measurements. Nat. Commun., 4, 2432(2013).

    [13] I. Afek, O. Ambar, Y. Silberberg. High-noon states by mixing quantum and classical light. Science, 328, 879-881(2010).

    [14] G. Y. Xiang, B. L. Higgins, D. W. Berry, H. M. Wiseman, G. J. Pryde. Entanglement-enhanced measurement of a completely unknown optical phase. Nat. Photonics, 5, 43-47(2011).

    [15] B. L. Higgins, D. W. Berry, S. D. Bartlett, H. M. Wiseman, G. J. Pryde. Entanglement-free Heisenberg-limited phase estimation. Nature, 450, 393-396(2007).

    [16] R. Barboza, A. Babazadeh, L. Marrucci, F. Cardano, C. de Lisio, V. D’Ambrosio. Ultra-sensitive measurement of transverse displacements with linear photonic gears. Nat. Commun., 13, 1080(2022).

    [17] O. S. Magaña Loaiza, M. Mirhosseini, B. Rodenburg, R. W. Boyd. Amplification of angular rotations using weak measurements. Phys. Rev. Lett., 112, 200401(2014).

    [18] V. Delaubert, N. Treps, M. Lassen, C. C. Harb, C. Fabre, P. K. Lam, H.-A. Bachor. tem10 homodyne detection as an optimal small-displacement and tilt-measurement scheme. Phys. Rev. A, 74, 053823(2006).

    [19] H. Sun, K. Liu, Z. Liu, P. Guo, J. Zhang, J. Gao. Small-displacement measurements using high-order Hermite-Gauss modes. Appl. Phys. Lett., 104, 121908(2014).

    [20] A. Holevo. Unbiased Measurements, 219-264(2011).

    [21] C. Rosales-Guzmán, N. Hermosa, A. Belmonte, J. P. Torres. Experimental detection of transverse particle movement with structured light. Sci. Rep., 3, 2815(2013).

    [22] N. Uribe-Patarroyo, A. Fraine, D. S. Simon, O. Minaeva, A. V. Sergienko. Object identification using correlated orbital angular momentum states. Phys. Rev. Lett., 110, 043601(2013).

    [23] Y. Aharonov, D. Z. Albert, L. Vaidman. How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100. Phys. Rev. Lett., 60, 1351-1354(1988).

    [24] R. Jozsa. Complex weak values in quantum measurement. Phys. Rev. A, 76, 044103(2007).

    [25] K. Matsumoto. A new approach to the Cramér-Rao-type bound of the pure-state model. J. Phys. A, 35, 3111-3123(2002).

    [26] R. Demkowicz-Dobrzański, M. Jarzyna, J. Kołodyński. Chapter 4 - Quantum limits in optical interferometry. Prog. Opt., 60, 345-435(2015).

    [27] I. Kimel, L. R. Elias. Relations between Hermite and Laguerre Gaussian modes. IEEE J. Quantum Electron., 29, 2562-2567(1993).

    [28] G. Nienhuis. Analogies between optical and quantum mechanical angular momentum. Philos. Trans. R. Soc. A, 375, 20150443(2017).

    [29] J. Liu, H. Yuan, X.-M. Lu, X. Wang. Quantum fisher information matrix and multiparameter estimation. J. Phys. A: Math. Theor., 53, 023001(2019).

    [30] T. W. Clark, R. F. Offer, S. Franke-Arnold, A. S. Arnold, N. Radwell. Comparison of beam generation techniques using a phase only spatial light modulator. Opt. Express, 24, 6249-6264(2016).

    [31] O. Hosten, P. Kwiat. Observation of the spin Hall effect of light via weak measurements. Science, 319, 787-790(2008).

    [32] P. B. Dixon, D. J. Starling, A. N. Jordan, J. C. Howell. Ultrasensitive beam deflection measurement via interferometric weak value amplification. Phys. Rev. Lett., 102, 173601(2009).

    [33] M. Hallaji, A. Feizpour, G. Dmochowski, J. Sinclair, A. Steinberg. Weak-value amplification of the nonlinear effect of a single photon. Nat. Phys., 13, 540-544(2017).

    [34] H. Li, J.-Z. Huang, Y. Yu, Y. Li, C. Fang, G. Zeng. High-precision temperature measurement based on weak measurement using nematic liquid crystals. Appl. Phys. Lett., 112, 231901(2018).

    [35] C. Fang, J.-Z. Huang, G. Zeng. Robust interferometry against imperfections based on weak value amplification. Phys. Rev. A, 97, 063818(2018).

    [36] L. Xu, Z. Liu, L. Zhang. Weak-measurement-enhanced metrology in the presence of ccd noise and saturation. Frontiers in Optics/Laser Science, JW4A.126(2018).

    [37] L. Xu, Z. Liu, A. Datta, G. C. Knee, J. S. Lundeen, Y.-Q. Lu, L. Zhang. Approaching quantum-limited metrology with imperfect detectors by using weak-value amplification. Phys. Rev. Lett., 125, 080501(2020).

    [38] A. Sone, P. Cappellaro. Hamiltonian identifiability assisted by a single-probe measurement. Phys. Rev. A, 95, 022335(2017).

    [39] C. Fang, B. Xia, J. Huang, T. Xiao, Y. Yu, H. Li, G. Zeng. Hamiltonian estimation based on adaptive weak value amplification. J. Phys. B, 54, 075501(2021).

    [40] M. Genovese. Experimental quantum enhanced optical interferometry. AVS Quantum Sci., 3, 044702(2021).

    [41] Z. K. Minev, S. O. Mundhada, S. Shankar, P. Reinhold, R. Gutiérrez-Jáuregui, R. J. Schoelkopf, M. Mirrahimi, H. J. Carmichael, M. H. Devoret. To catch and reverse a quantum jump mid-flight. Nature, 570, 200-204(2019).

    [42] M. Hays, V. Fatemi, K. Serniak, D. Bouman, S. Diamond, G. de Lange, P. Krogstrup, J. Nygård, A. Geresdi, M. H. Devoret. Continuous monitoring of a trapped superconducting spin. Nat. Phys., 16, 1103-1107(2020).

    [43] M. D. LaHaye, J. Suh, P. M. Echternach, K. C. Schwab, M. L. Roukes. Nanomechanical measurements of a superconducting qubit. Nature, 459, 960-964(2009).

    [44] M. Kjaergaard, M. E. Schwartz, J. Braumüller, P. Krantz, J. I.-J. Wang, S. Gustavsson, W. D. Oliver. Superconducting qubits: current state of play. Annu. Rev. Condens. Matter Phys., 11, 369-395(2020).

    [45] A. D. O’Connell, M. Hofheinz, M. Ansmann, R. C. Bialczak, M. Lenander, E. Lucero, M. Neeley, D. Sank, H. Wang, M. Weides, J. Wenner, J. M. Martinis, A. N. Cleland. Quantum ground state and single-phonon control of a mechanical resonator. Nature, 464, 697-703(2010).

    [46] B. Pepper, R. Ghobadi, E. Jeffrey, C. Simon, D. Bouwmeester. Optomechanical superpositions via nested interferometry. Phys. Rev. Lett., 109, 023601(2012).

    [47] K. C. Balram, M. I. Davanço, J. D. Song, K. Srinivasan. Coherent coupling between radiofrequency, optical and acoustic waves in piezo-optomechanical circuits. Nat. Photonics, 10, 346-352(2016).

    [48] W. Kong, A. Sugita, T. Taira. Generation of Hermite–Gaussian modes and vortex arrays based on two-dimensional gain distribution controlled microchip laser. Opt. Lett., 37, 2661-2663(2012).

    [49] S.-C. Chu, Y.-T. Chen, K.-F. Tsai, K. Otsuka. Generation of high-order Hermite-Gaussian modes in end-pumped solid-state lasers for square vortex array laser beam generation. Opt. Express, 20, 7128-7141(2012).

    [50] B. Xia, J. Huang, C. Fang, H. Li, G. Zeng. High-precision multiparameter weak measurement with Hermite-Gaussian pointer. Phys. Rev. Appl., 13, 034023(2020).

    Tools

    Get Citation

    Copy Citation Text

    Binke Xia, Jingzheng Huang, Hongjing Li, Miaomiao Liu, Tailong Xiao, Chen Fang, Guihua Zeng. Ultrasensitive measurement of angular rotations via a Hermite–Gaussian pointer[J]. Photonics Research, 2022, 10(12): 2816

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Instrumentation and Measurements

    Received: Aug. 19, 2022

    Accepted: Oct. 14, 2022

    Published Online: Nov. 24, 2022

    The Author Email: Jingzheng Huang (jzhuang1983@sjtu.edu.cn), Guihua Zeng (ghzeng@sjtu.edu.cn)

    DOI:10.1364/PRJ.473699

    Topics

    Please enter the answer below before you can view the full text.
    1+1=
    Submit