The Journal of Light Scattering, Volume. 33, Issue 1, 24(2021)
Comparative Study of SERS Performance of Assembled Au Nanorods and Au Nanodumbbells Based on Capillaries
[1] [1] Langer J, Jimenez De Aberasturi D, Aizpurua J, et al. Present and future of surface-enhanced Raman scattering [J]. Acs Nano, 2020, 14(1): 28-117.
[2] [2] Lee H K, Lee Y H, Koh C S L, et al. Designing surface-enhanced Raman scattering (SERS) platforms beyond hotspot engineering: emerging opportunities in analyte manipulations and hybrid materials [J]. Chemical Society Reviews, 2019, 48(3): 731-756.
[3] [3] Fan M, Andrade G F S, Brolo A G. A review on recent advances in the applications of surface-enhanced Raman scattering in analytical chemistry [J]. Analytica Chimica Acta, 2020, 1097: 1-29.
[4] [4] Wang J, Koo K M, Wang Y, et al. Engineering state-of-the-art plasmonic nanomaterials for SERS-based clinical liquid biopsy applications [J]. Advanced Science, 2019, 6(23): 1900730.
[5] [5] Restaino S M, White I M. A critical review of flexible and porous SERS sensors for analytical chemistry at the point-of-sample [J]. Analytica Chimica Acta, 2019, 1060: 17-29.
[6] [6] Hanif S, Liu H, Chen M, et al. Organic cyanide decorated SERS active nanopipettes for quantitative detection of hemeproteins and Fe3+ in single cells [J]. Analytical Chemistry, 2017, 89(4): 2522-2530.
[7] [7] Liu B, Wang K, Gao B, et al. TiO2-coated silica photonic crystal capillaries for plasmon-free SERS analysis [J]. ACS Applied Nano Materials, 2019, 2(5): 3177-3186.
[8] [8] Huang Z, Siddhanta S, Zheng G, et al. Rapid, label-free optical spectroscopy platform for diagnosis of heparin-induced thrombocytopenia [J]. Angewandte Chemie International Edition, 2020, 59(15): 5972-5978.
[9] [9] Shanthil M, Fathima H, George Thomas K. Cost-effective plasmonic platforms: glass capillaries decorated with Ag@SiO2 nanoparticles on inner walls as SERS substrates [J]. ACS Appl Mater Interfaces, 2017, 9(23): 19470-19477.
[10] [10] Yu Y, Zeng P, Yang C, et al. Gold-nanorod-coated capillaries for the SERS-based detection of thiram [J]. ACS Applied Nano Materials, 2019, 2(1): 598-606.
[11] [11] Lin S, Hasi W, Lin X, et al. Lab-on-capillary platform for On-Site quantitative SERS analysis of surface contaminants based on Au@4-MBA@Ag core-shell nanorods [J]. ACS Sensors, 2020, 5(5): 1465-1473.
[12] [12] Cui L, Zhang D, Yang K, et al. Perspective on surface-enhanced Raman spectroscopic investigation of microbial world [J]. Analytical Chemistry, 2019, 91(24): 15345-15354.
[13] [13] Yang T-H, Gilroy K D, Xia Y. Reduction rate as a quantitative knob for achieving deterministic synthesis of colloidal metal nanocrystals [J]. Chemical Science, 2017, 8(10): 6730-6749.
[14] [14] Reguera J, Langer J, Jimenez De Aberasturi D, et al. Anisotropic metal nanoparticles for surface enhanced Raman scattering [J]. Chemical Society Reviews, 2017, 46(13): 3866-3885.
[15] [15] Oseledchyk A, Andreou C, Wall M A, et al. Folate-targeted surface-enhanced resonance Raman scattering nanoprobe ratiometry for detection of microscopic ovarian cancer [J]. Acs Nano, 2017, 11(2): 1488-1497.
[16] [16] Ye X, Jin L, Caglayan H, et al. Improved size-tunable synthesis of monodisperse gold nanorods through the use of aromatic additives [J]. Acs Nano, 2012, 6(3): 2804-2817.
[18] [18] Tang X, Dong R, Yang L, et al. Fabrication of Au nanorod-coated Fe3O4 microspheres as SERS substrate for pesticide analysis by near-infrared excitation [J]. Journal of Raman Spectroscopy, 2015, 46(5): 470-475.
[19] [19] Wang X, Huang S-C, Hu S, et al. Fundamental understanding and applications of plasmon-enhanced Raman spectroscopy [J]. Nature Reviews Physics, 2020, 2(5): 253-271.
[20] [20] Zhou B, Mao M, Cao X, et al. Amphiphilic functionalized acupuncture needle as SERS sensor for In Situ multiphase detection [J]. Analytical Chemistry, 2018, 90(6): 3826-3832.
[21] [21] Lin S, Lin X, Liu Y, et al. Self-assembly of Au@Ag core-shell nanocubes embedded with an internal standard for reliable quantitative SERS measurements [J]. Analytical Methods, 2018, 10(34): 4201-4208.
[22] [22] Dong J, Zhao X, Gao W, et al. Nanoscale vertical arrays of gold nanorods by self-assembly: Physical mechanism and application [J]. Nanoscale Research Letters, 2019, 14(1): 118.
[23] [23] Meng J, Qin S, Zhang L, et al. Designing of a novel gold nanodumbbells SERS substrate for detection of prohibited colorants in drinks [J]. Applied Surface Science, 2016, 366: 181-186.
[31] [31] Zhou B, Shen J, Li P, et al. Gold nanoparticle-decorated silver needle for surface-enhanced Raman spectroscopy screening of residual malachite green in aquaculture products [J]. ACS Applied Nano Materials, 2019, 2(5): 2752-2757.
[32] [32] Li M, Dyett B, Yu H, et al. Functional femtoliter droplets for ultrafast nanoextraction and supersensitive online microanalysis [J]. Small, 2019, 15(1): 1804683.
[33] [33] Yang M, Yu J, Lei F, et al. Synthesis of low-cost 3D-porous ZnO/Ag SERS-active substrate with ultrasensitive and repeatable detectability [J]. Sensors and Actuators B: Chemical, 2018, 256: 268-275.
Get Citation
Copy Citation Text
WANG XiaoAn, SHEN Wei, YU Daoyang, DONG ronglu, TANG Xianghu. Comparative Study of SERS Performance of Assembled Au Nanorods and Au Nanodumbbells Based on Capillaries[J]. The Journal of Light Scattering, 2021, 33(1): 24
Category:
Received: Sep. 24, 2020
Accepted: --
Published Online: Sep. 12, 2021
The Author Email: XiaoAn WANG (wxa0226@mail.ustc.edu.cn)