Chinese Journal of Lasers, Volume. 48, Issue 16, 1601003(2021)

Frequency-Swept Fiber Laser Based on Fourier-Domain Mode-Locking: A Case Study on Erbium-Doped Fiber Laser

Da Wei1,2, Ting Feng1,2、*, Fengping Yan3, Zeyuan Ma1,2, and Xiaotian Yao1,2
Author Affiliations
  • 1Photonics Information Innovation Center, College of Physics and Technology, Hebei University, Baoding, Hebei 0 71002, China
  • 2Hebei Provincial Center for Optical Sensing Innovations, Baoding, Hebei 0 71002, China
  • 3Institute of Lightwave Technology, Beijing Jiaotong University, Beijing 100044, China
  • show less
    References(49)

    [1] Huber R, Wojtkowski M, Fujimoto J G. Fourier Domain Mode Locking (FDML): a new laser operating regime and applications for optical coherence tomography[J]. Optics Express, 14, 3225-3237(2006).

    [2] Adler D C, Wieser W, Trepanier F et al. Extended coherence length Fourier domain mode locked lasers at 1310 nm[J]. Optics Express, 19, 20930-20939(2011).

    [3] Adler D C, Chen Y, Huber R et al. Three-dimensional endomicroscopy using optical coherence tomography[J]. Nature Photonics, 1, 709-716(2007).

    [4] Eigenwillig C M, Biedermann B R, Palte G et al. K-space linear Fourier domain mode locked laser and applications for optical coherence tomography[J]. Optics Express, 16, 8916-8937(2008).

    [5] Shang H Y, Huo L, Wu Y P et al. Optical coherence imaging system based on a polarization-dependent semiconductor optical amplifier-enabled swept laser[J]. Chinese Journal of Lasers, 41, 1102002(2014).

    [6] Klein T, Wieser W, Biedermann B R et al. Raman-pumped Fourier-domain mode-locked laser: analysis of operation and application for optical coherence tomography[J]. Optics Letters, 33, 2815-2817(2008).

    [7] Lian C M, Zhong S C, Zhang T F et al. Transfer learning-based classification of optical coherence tomography retinal images[J]. Laser & Optoelectronics Progress, 58, 0117002(2021).

    [8] Biedermann B R, Wieser W, Eigenwillig C M et al. Real time en face Fourier-domain optical coherence tomography with direct hardware frequency demodulation[J]. Optics Letters, 33, 2556-2558(2008).

    [9] Biedermann B R, Wieser W, Eigenwillig C M et al. Recent developments in Fourier domain mode locked lasers for optical coherence tomography: imaging at 1310 nm vs. 1550 nm wavelength[J]. Journal of Biophotonics, 2, 357-363(2009).

    [10] Klein T, Wieser W, Eigenwillig C M et al. Megahertz OCT for ultrawide-field retinal imaging with a 1050 nm Fourier domain mode-locked laser[J]. Optics Express, 19, 3044-3062(2011).

    [11] Liu Q, Wang Y M, Li Z Y et al. High-speed interrogation system of multi-encoding weak FBGs based on FDML wavelength swept laser[J]. Optics & Laser Technology, 107, 54-58(2018).

    [12] Jung E J, Kim C S, Jeong M Y et al. Characterization of FBG sensor interrogation based on a FDML wavelength swept laser[J]. Optics Express, 16, 16552-16560(2008).

    [13] Oh W Y, Yun S H, Tearney G J et al. 115 kHz tuning repetition rate ultrahigh-speed wavelength-swept semiconductor laser[J]. Optics Letters, 30, 3159-3161(2005).

    [14] Choma M A, Hsu K, Izatt J A. Swept source optical coherence tomography using an all-fiber 1300-nm ring laser source[J]. Journal of Biomedical Optics, 10, 044009(2005).

    [16] Wysocki P F, Digonnet M J, Kim B Y. Broad-spectrum, wavelength-swept, erbium-doped fiber laser at 1.55 microm[J]. Optics Letters, 15, 879-881(1990).

    [18] Telle J M, Tang C L. Very rapid tuning of CW dye laser[J]. Applied Physics Letters, 26, 572-574(1975).

    [19] Leung M K K, Mariampillai A, Standish B A et al. High-power wavelength-swept laser in Littman telescope-less polygon filter and dual-amplifier configuration for multichannel optical coherence tomography[J]. Optics Letters, 34, 2814-2816(2009).

    [20] Mao Y X, Flueraru C, Chang S D et al. High-power 1300 nm FDML swept laser using polygon-based narrowband optical scanning filter[J]. Proceedings of SPIE, 7168, 716822(2009).

    [21] Chen M H. Development of swept laser source for optical coherence tomography[D], 57-64(2011).

    [22] Huber R, Adler D C, Fujimoto J G. Buffered Fourier domain mode locking: unidirectional swept laser sources for optical coherence tomography imaging at 370, 000 lines/s[J]. Optics Letters, 31, 2975-2977(2006).

    [23] Wieser W, Biedermann B R, Klein T et al. Multi-Megahertz OCT: high quality 3D imaging at 20 million A-scans and 4.5 GVoxels per second[J]. Optics Express, 18, 14685-14704(2010).

    [25] Huang W, Cui Y L, Li Z X et al. Research on 1.7 μm fiber laser source based on stimulated Raman scattering of hydrogen in hollow-core fiber[J]. Acta Optica Sinica, 40, 0514001(2020).

    [26] Cheung K K Y, Zhang C, Cheng K H Y et al. Fourier domain mode locking laser based on two-pump optical parametric amplification[C]. //IEEE Photonics Society Summer Topicals 2010, July 19-21, 2010, Playa del Carmen, Mexico., 186-187(2010).

    [27] Cheng K H Y, Standish B A, Yang V X D et al. Wavelength-swept spectral and pulse shaping utilizing hybrid Fourier domain modelocking by fiber optical parametric and erbium-doped fiber amplifiers[J]. Optics Express, 18, 1909-1915(2010).

    [28] Feng T, Jiang M L, Wei D et al. Four-wavelength-switchable SLM fiber laser with sub-kHz linewidth using superimposed high-birefringence FBG and dual-coupler ring based compound-cavity filter[J]. Optics Express, 27, 36662-36679(2019).

    [29] Feng T, Ding D L, Yan F P et al. Widely tunable single-/dual-wavelength fiber lasers with ultra-narrow linewidth and high OSNR using high quality passive subring cavity and novel tuning method[J]. Optics Express, 24, 19760-19768(2016).

    [30] Feng T, Wang M M, Wang X C et al. Switchable 0.612-nm-spaced dual-wavelength fiber laser with sub-kHz linewidth, ultra-high OSNR, ultra-low RIN, and orthogonal polarization outputs[J]. Journal of Lightwave Technology, 37, 3173-3182(2019).

    [31] Bai Y, Yan F P, Feng T et al. Ultra-narrow-linewidth fiber laser in 2 μm band using saturable absorber based on PM-TDF[J]. Chinese Journal of Lasers, 46, 0101003(2019).

    [32] Ouyang T C, Dong G P, Qiu J R. Research progress in solid-state lasers based on rare earth ion-doped oxyfluoride glass ceramics[J]. Laser & Optoelectronics Progress, 57, 071608(2020).

    [33] Feng T, Ding D L, Liu P et al. Widely tunable/wavelength-swept SLM fiber laser with ultra-narrow linewidth and ultra-high OSNR[J]. Optoelectronics Letters, 12, 433-436(2016).

    [34] Todor S, Biedermann B, Huber R et al. Balance of physical effects causing stationary operation of Fourier domain mode-locked lasers[J]. Journal of the Optical Society of America B. Optical Physics, 29, 656-664(2012).

    [35] Xu J B, Zhu R, Wang X et al. Fourier domain mode locking laser for enhanced sweeping range based on dispersion-shifted fiber[C]. //National Fiber Optic Engineers Conference 2012, March 4-8, Los Angeles, California, JW2A, 28(2012).

    [36] Marschall S, Klein T, Wieser W et al. Fourier domain mode-locked swept source at 1050 nm based on a tapered amplifier[J]. Optics Express, 18, 15820-15831(2010).

    [37] Yun S H, Boudoux C, Tearney G J et al. High-speed wavelength-swept semiconductor laser with a polygon-scanner-based wavelength filter[J]. Optics Letters, 28, 1981-1983(2003).

    [38] Murari K, Mavadia J, Xi J et al. Self-starting, self-regulating Fourier domain mode locked fiber laser for OCT imaging[J]. Biomedical Optics Express, 2, 2005-2011(2011).

    [39] Huber R, Wojtkowski M, Taira K et al. Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles[J]. Optics Express, 13, 3513-3528(2005).

    [40] Jung H, Gweon D G. Creep characteristics of piezoelectric actuators[J]. Review of Scientific Instruments, 71, 1896-1900(2000).

    [41] Alwi H A B, Smith B V, Carey J R. Factors which determine the tunable frequency range of tunable transducers[J]. The Journal of the Acoustical Society of America, 100, 840-847(1996).

    [42] Henry C. Theory of the linewidth of semiconductor lasers[J]. IEEE Journal of Quantum Electronics, 18, 259-264(1982).

    [43] Geng J H, Wang Q, Wang J F et al. All-fiber wavelength-swept laser near 2 μm[J]. Optics Letters, 36, 3771-3773(2011).

    [44] Todor S, Biedermann B, Wieser W et al. Instantaneous lineshape analysis of Fourier domain mode-locked lasers[J]. Optics Express, 19, 8802-8807(2011).

    [45] Olsson N, Hegarty J. Noise properties of a Raman amplifier[J]. Journal of Lightwave Technology, 4, 396-399(1986).

    [46] Henry C H, Kazarinov R F. Quantum noise in photonics[J]. Reviews of Modern Physics, 68, 801-853(1996).

    [47] Pan W W, Zhou J Q, Zhang L et al. Research advances in ultrafast Raman fiber lasers[J]. Chinese Journal of Lasers, 46, 0508016(2019).

    [48] Paschotta R, Nilsson J, Tropper A C et al. Ytterbium-doped fiber amplifiers[J]. IEEE Journal of Quantum Electronics, 33, 1049-1056(1997).

    [49] Zhang Y J, Liu J, Wang P. All-fiber wavelength-tunable passively mode-locked thulium-doped fiber laser[J]. Chinese Journal of Lasers, 45, 1001003(2018).

    Tools

    Get Citation

    Copy Citation Text

    Da Wei, Ting Feng, Fengping Yan, Zeyuan Ma, Xiaotian Yao. Frequency-Swept Fiber Laser Based on Fourier-Domain Mode-Locking: A Case Study on Erbium-Doped Fiber Laser[J]. Chinese Journal of Lasers, 2021, 48(16): 1601003

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: laser devices and laser physics

    Received: Dec. 25, 2020

    Accepted: Feb. 22, 2021

    Published Online: Jul. 30, 2021

    The Author Email: Ting Feng (wlxyft@hbu.edu.cn)

    DOI:10.3788/CJL202148.1601003

    Topics