Optics and Precision Engineering, Volume. 33, Issue 9, 1496(2025)

Improvement of YOLOv8 for multi-scale defect detection in wind turbine blades

Guang ZHU1,2、*, Chen GU1, Liyun XU2, Yanqiong SHI1, Zhengyang DING1, Xu ZHANG1, and Yonghua ZHANG1
Author Affiliations
  • 1School of Mechanical and Electrical Engineering, Anhui Jianzhu University, Hefei23060, China
  • 2School of Mechanical Engineering, Tongji University, Shanghai01804, China
  • show less
    References(44)

    [1] ARCOS JIMÉNEZ A, GÓMEZ MUÑOZ C Q, GARCÍA MÁRQUEZ F P. Dirt and mud detection and diagnosis on a wind turbine blade employing guided waves and supervised learning classifiers[J]. Reliability Engineering & System Safety, 184, 2-12(2019).

    [2] DOLIŃSKI Ł, KRAWCZUK M, ŻAK A. Detection of delamination in laminate wind turbine blades using one-dimensional wavelet analysis of modal responses[J]. Shock and Vibration, 2018, 4507879(2018).

         CUI J L, WANG H, ZHENG H et al. Fusion image detection method based on LDI-YOLOv8[J]. Microelectronics & Computer, 1-20240808.1049(2024).

         [J].

    [3] LIU Z, LIU X, ZHU S P et al. Reliability assessment of measurement accuracy for FBG sensors used in structural tests of the wind turbine blades based on strain transfer laws[J]. Engineering Failure Analysis, 112, 104506(2020).

    [4] WU R, ZHANG D S, YU Q F et al. Health monitoring of wind turbine blades in operation using three-dimensional digital image correlation[J]. Mechanical Systems and Signal Processing, 130, 470-483(2019).

    [5] MORENO S, PENA M, TOLEDO A et al. A new vision-based method using deep learning for damage inspection in wind turbine blades[C], 5, 1-5(2018).

    [6] SHI L C, LONG Y, WANG Y Z et al. Evaluation of internal cracks in turbine blade thermal barrier coating using enhanced multi-scale faster R-CNN model[J]. Applied Sciences, 12, 6446(2022).

    [7] ZHANG C, WEN C B, LIU J H. Mask-MRNet: a deep neural network for wind turbine blade fault detection[J]. Journal of Renewable and Sustainable Energy, 12(2020).

    [8] REDMON J, DIVVALA S, GIRSHICK R et al. You only look once: unified, real-time object detection[C], 27, 779-788(2016).

    [9] LIU W, ANGUELOV D, ERHAN D et al[M]. SSD:Single Shot MultiBox Detector, 21-37(2016).

    [10] LV L, YAO Z Y, WANG E M et al. Efficient and accurate damage detector for wind turbine blade images[J]. IEEE Access, 10, 123378-123386(2022).

    [11] ZHU X X, HANG X Y, GAO X X et al. Research on crack detection method of wind turbine blade based on a deep learning method[J]. Applied Energy, 328, 120241(2022).

         [J].

         LIANG L M, FENG Y, LONG P W et al. Target detection in remote sensing image based on island bidirectional feature pyramid[J]. Computer Engineering and Applications, 1-20240906.1356(2024).

    [12] ZHENG Y Q, LIU Y H, WEI T et al. Wind turbine blades surface crack-detection algorithm based on improved YOLO-v5 model[J]. Journal of Electronic Imaging, 32(2023).

    [13] TONG L, FAN C L, PENG Z B et al. WTBD-YOLOv8: an improved method for wind turbine generator defect detection[J]. Sustainability, 16, 4467(2024).

    [14] ZHONG J, CHEN J, MIAN A. DualConv: dual convolutional kernels for lightweight deep neural networks[J]. IEEE Trans Neural Netw Learn Syst, 34, 9528-9535(2023).

    [15] 王蕾, 郭文平, 陈欣慰. 融合多尺度特征的蜗杆表面缺陷检测[J]. 光学 精密工程, 32, 1746-1758(2024).

         WANG L, GUO W P, CHEN X W et al. Worm surface defect detection with fusion of multi-scale features[J]. Optics and Precision Engineering, 32, 1746-1758(2024).

    [16] 蔡引娣, 张殿鹏, 孙梓盟. 基于改进YOLOv8模型的增材制造微小气孔缺陷检测及其尺寸测量[J]. 光学 精密工程, 32, 3222-3230(2024).

         CAI Y D, ZHANG D P, SUN Z M et al. YOLOv8 model-based additive manufacturing micro porosity defect detection and its dimension measurement[J]. Optics and Precision Engineering, 32, 3222-3230(2024).

    [17] MISRA D. Mish: A self regularized non-monotonic activation function[webpage]. org/abs/, 1908-08681.

    [18] CHEN Z L, LU S N. Caf-yolo: A robust framework for multi-scale lesion detection in biomedical imagery[webpage]. org/abs/2408.01897.

    [19] PARK J, LEE J Y et al. CBAM: convolutional block attention module[C], 3-19(2018).

    [20] YU Y, ZHANG Y, CHENG Z Y et al. MCA: Multidimensional collaborative attention in deep convolutional neural networks for image recognition[J]. Engineering Applications of Artificial Intelligence, 126, 107079(2023).

    [21] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C], 18, 7132-7141(2018).

    [22] LIU Y, SHAO Z, HOFFMANN N. Global attention mechanism: Retain information to enhance channel-spatial interactions[webpage]. org/abs/2112.05561.

    [24] YU Z P, HUANG H B, CHEN W J et al. YOLO-FaceV2: a scale and occlusion aware face detector[J]. Pattern Recognition, 155, 110714(2024).

    [25] WAN D H, LU R S, SHEN S Y et al. Mixed local channel attention for object detection[J]. Engineering Applications of Artificial Intelligence, 123, 106442(2023).

    [26] LI C, LI L, JIANG H et al. YOLOv6: A single-stage objectdetection framework for industrial applications[webpage]. org/abs/1804.02767.

    [27] WANG C Y, BOCHKOVSKIY A, LIAO H M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C], 17, 7464-7475(2023).

    [28] 张冀, 王文彬, 余洋. 基于RFCARep-YOLOv8n的光伏电池缺陷检测算法[J]. 计算机工程与应用, 61, 131-143(2025).

         ZHANG J, WANG W B, YU Y. Defect detection of photovoltaic cells based on RFCARep-YOLOv8n[J]. Computer Engineering and Applications, 61, 131-143(2025).

    [30] 许德刚, 王双臣, 王再庆. 改进YOLOv8算法的城市车辆目标检测[J]. 计算机工程与应用, 60, 136-146(2024).

         XU D G, WANG SH CH, WANG Z Q et al. Improved YOLOv8 urban vehicle target detection algorithm[J]. Computer Engineering and Applications, 60, 136-146(2024).

    [32] 齐向明, 严萍萍, 姜亮. 基于YOLOv8n的航拍图像小目标检测算法[J]. 计算机工程与应用, 60, 200-210(2024).

         QI X M, YAN P P, JIANG L. Small target detection algorithm for aerial images based on YOLOv8n[J]. Computer Engineering and Applications, 60, 200-210(2024).

    [33] ZHAO Y A, LV W Y, XU S L et al. DETRs beat YOLOs on real-time object detection[C], 16, 16965-16974(2024).

    [34] GUO W, WEN W, JIN H B et al. Multi-defect detection of aerial insulators based on cross-scale and multi-dimensional cooperative feature interaction[J]. Computer Engineering and Applications, 1-20240814.1111(2024).

         [J].

    [35] WANG A, CHEN H, LIU L et al. Yolov10: Real-time end-to-end object detection[webpage]. org/abs/2405.14458.

    [36] CAI X, WU J. PCB bare board defect detection based on improved YOLOv7-tiny[C], 17, 5768-5773(2023).

    [37] WANG C Y, YEH I H, LIAO H Y M. YOLOv9: Learning what you want to learn using programmable gradient information[webpage]. org/abs/2402.13616.

    Tools

    Get Citation

    Copy Citation Text

    Guang ZHU, Chen GU, Liyun XU, Yanqiong SHI, Zhengyang DING, Xu ZHANG, Yonghua ZHANG. Improvement of YOLOv8 for multi-scale defect detection in wind turbine blades[J]. Optics and Precision Engineering, 2025, 33(9): 1496

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Dec. 16, 2024

    Accepted: --

    Published Online: Jul. 22, 2025

    The Author Email: Guang ZHU (guangzhu123@ahjzu.edu.cn)

    DOI:10.37188/OPE.20253309.1496

    Topics