Laser & Optoelectronics Progress, Volume. 60, Issue 5, 0514008(2023)

Numerical Simulation and Regression Orthogonal Experiment Optimization of Laser Cladding of Nickel-Based Superalloy

Sirui Yang1, Haiqing Bai1,2、*, Chaofan Li1, Xinhe Zhang1, and Zongqiang Jia1
Author Affiliations
  • 1School of Mechanical Engineering, Shaanxi University of Technology, Hanzhong 723001, Shaanxi, China
  • 2Shaanxi Key Laboratory of Industrial Automation, Hanzhong 723001, Shaanxi, China
  • show less
    Figures & Tables(22)
    3D model
    Schematic diagram of temperature measurement. (a) Geometrical characteristics of cladding layer cross section; (b) position and direction of temperature measurement; (c) determination of molten pool width; (d) determination of molten pool depth
    3 kW fiber laser cladding machine
    Ultra depth of field microscope
    Microvickers hardness tester
    Microstructure of Inconel718 alloy powder
    Microstructure of cladding layer
    Variation of hardness with laser power
    Variation of hardness with powder feeding rate
    Variation of cladding layer morphology with laser power
    Variation of cladding layer morphology with powder feeding rate
    Variation of dilution rate with laser power
    Variation of dilution rate with powder feeding rate
    • Table 1. Basic physical parameters

      View table

      Table 1. Basic physical parameters

      MaterialDensity /(kg·m-3Melting point /℃Phase transition temperature region /℃
      45#steel785014951490—1530
      Inconel718 alloy powder824012601260—1320
    • Table 2. Thermal physical properties of 45# steel

      View table

      Table 2. Thermal physical properties of 45# steel

      Temperature /℃201002003004005006008001000120014001600
      Specific heat /(J·kg-1·℃-1472480798560586615700806637602587576
      Coefficient of thermal conductivity /(W·m-1·℃-147.6843.5340.4438.1336.0234.1621.9826.4925.9224.0223.5122.66
    • Table 3. Thermal physical parameters of Inconel718 alloy

      View table

      Table 3. Thermal physical parameters of Inconel718 alloy

      Temperature /℃201002003004005006008001000120014001600
      Specific heat /(J·kg-1·℃-1421442453472481502527562606628636649
      Coefficient of thermal conductivity /(W·m-1·℃-111.912.413.715.216.918.721.725.622.919.117.715.8
    • Table 4. Comparison and error of molten pool size

      View table

      Table 4. Comparison and error of molten pool size

      Experimental scheme

      results /mm

      Simulation

      results /mm

      Experimental

      Error /%

      Laser power

      /W

      Scanning speed /(mm·s-1Powder feeding rate x3 /(g·min-1WidthDepthWidthDepthWidthDepth
      120015181.730.441.640.425.65.3
      150021191.890.531.870.511.13.9
      180015171.990.671.980.650.32.7
      210023201.830.391.830.380.33.9
      240017162.220.882.170.882.20.2
    • Table 5. Factor level coding table

      View table

      Table 5. Factor level coding table

      Factor xjLaser power x1 /WScan speed x2 /(mm·s-1Powder feeding rate x3 /(g·min-1
      Upper level(1)24002320
      Lower level(-1)12001516
      Zero level(0)18001918
      Varying pitch j60042
    • Table 6. Ternary linear regression orthogonal test scheme and test results

      View table

      Table 6. Ternary linear regression orthogonal test scheme and test results

      NumberZ1Z2Z1Z2Z3Z1Z3X1X2X3

      Cladding layer

      width /mm

      Depth of molten pool /mmForming factor y
      111111240023201.780.453.95
      2111-1-1240023162.030.712.86
      31-1-111240015201.980.643.09
      41-1-1-1-1240015162.170.872.49
      5-11-11-1120023201.310.206.55
      6-11-1-11120023161.520.314.91
      7-1-111-1120015201.490.265.73
      8-1-11-11120015161.670.443.79
    • Table 7. Ternary linear regression orthogonal design calculation table

      View table

      Table 7. Ternary linear regression orthogonal design calculation table

      NumberZ1Z2Z1Z2Z3Z1Z3yy2Z1yZ2yZ3yZ1Z2yZ1Z3y
      1111113.9515.60253.953.953.953.953.95
      2111-1-12.868.17962.862.86-2.862.86-2.86
      31-1-1113.099.54813.09-3.093.09-3.093.09
      41-1-1-1-12.496.20012.49-2.49-2.49-2.49-2.49
      5-11-11-16.5542.9025-6.556.556.55-6.55-6.55
      6-11-1-114.9124.1081-4.914.91-4.91-4.914.91
      7-1-111-15.7332.8329-5.73-5.735.735.73-5.73
      8-1-11-113.7914.3641-3.79-3.79-3.793.793.79
      33.37153.7379-8.593.175.27-0.71-1.89
    • Table 8. Analysis of variance table

      View table

      Table 8. Analysis of variance table

      Source of differenceSSSfdfEMSFSignificance
      Z19.223519.2235223.431* * *
      Z21.256111.256130.428*
      Z33.471613.471684.096* *
      Z1Z20.063010.06301.526
      Z1Z30.446510.446510.816
      Return14.460752.892170.059* *
      Residual0.082620.4128
      Sum14.5433n-1=7
    • Table 9. Single factor experimental scheme and results

      View table

      Table 9. Single factor experimental scheme and results

      Serial numberLaser power /WPowder feeding rate /(g·min-1Depth of molten pool /mmMolten pool width /mmHeight of cladding layer /mmDilution rateHardness of cladding layer /HV
      11200160.421.640.590.416119.0
      215000.541.830.670.446196.1
      318000.671.980.750.472222.8
      421000.722.050.800.474258.4
      524000.882.180.940.483292.5
      61800160.641.980.650.496196.1
      7170.571.870.600.487219.4
      8180.481.810.540.471238.3
      9190.431.730.490.467255.2
      10200.381.660.450.458267.8
    Tools

    Get Citation

    Copy Citation Text

    Sirui Yang, Haiqing Bai, Chaofan Li, Xinhe Zhang, Zongqiang Jia. Numerical Simulation and Regression Orthogonal Experiment Optimization of Laser Cladding of Nickel-Based Superalloy[J]. Laser & Optoelectronics Progress, 2023, 60(5): 0514008

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Lasers and Laser Optics

    Received: Jan. 9, 2022

    Accepted: Feb. 28, 2022

    Published Online: Mar. 16, 2023

    The Author Email: Haiqing Bai (bretmail@snut.edu.cn)

    DOI:10.3788/LOP220699

    Topics