Laser Technology, Volume. 45, Issue 4, 417(2021)
Research progress of laser processing technology for glass materials
[1] [1] RIHAKOVA L, CHMELICKOVA H. Laser micromachining of glass, silicon and ceramics. A review[J]. European International Journal of Science and Technology, 2015, 4(7): 41-49.
[2] [2] YANG G Sh, CHEN T, CHEN H. Crack-free silica glass surface micro-grooves etched by 248nm excimer lasers[J]. Chinese Journal of Lasers, 2017, 44(9): 0902004(in Chinese).
[3] [3] LI Q S, LIANG T, LEI Ch, et al. 355nm all-solid-state ultraviolet laser direct writing and etching of micro-channels in borosilicate glass[J]. Chinese Journal of Lasers, 2018, 45(8): 0802003(in Chin-ese).
[4] [4] YU H F, XU J, ZHANG A D, et al. Fabrication of embedded submicron metal lines on glass surfaces[J]. Chinese Journal of Lasers, 2020, 47(5): 0502009(in Chinese).
[5] [5] WANG C. A study on laser etching and polishing quartz glasses technology[D]. Wuhan: Huazhong University of Science & Technology, 2012: 1-70(in Chinese).
[6] [6] HAMDANI A H, AHMED W, ANSAR A, et al. Parametric study of ablation depths for different optical glasses using high fluence laser induced plasma assisted ablation (LIPAA)[C]//Key Engineering Materials. Zurich, Switzerland: Trans Tech Publications Ltd., 2010, 442: 172-177.
[7] [7] RAHMAN T U, REHMAN Z U, ULLAH S, et al. Laser-induced plasma-assisted ablation (LIPAA) of glass: Effects of the laser fluence on plasma parameters and crater morphology[J]. Optics & Laser Technology, 2019, 120: 105768.
[8] [8] SARMA U, JOSHI S N. Two-dimensional numerical investigation on the effect of laser parameters on laser indirect machining of glass[C]//Advances in Mechanical Engineering: Select Proceedings of ICRIDME 2018. Singapore: Springer, 2020: 347-357.
[9] [9] EHRHARDT M, RACIUKAITIS G, GECYS P, et al. Microstructuring of fused silica by laser-induced backside wet etching using picosecond laser pulses[J]. Applied Surface Science, 2010, 256(23): 7222-7227.
[10] [10] KWON K K, KIM H, KIM T, et al. High aspect ratio channel fabrication with near-infrared laser-induced backside wet etching[J]. Journal of Materials Processing Technology, 2020, 278: 116505.
[11] [11] SUN X, YU J, HU Y, et al. Study on ablation threshold of fused silica by liquid-assisted femtosecond laser processing[J]. Applied Optics, 2019, 58(33): 9027-9032.
[12] [12] BRUSBERG L, QUEISSER M, GENTSCH C, et al. Advances in CO2-laser drilling of glass substrates[J]. Physics Procedia, 2012, 39: 548-555.
[13] [13] UNO K, YAMAMOTO T, WATANABE M, et al. SiO2-glass drilling by short-pulse CO2 laser with controllable pulse-tail energy[C]//Laser Applications in Microelectronic and Optoelectronic Manufacturing (LAMOM) ⅩⅪ. San Francisco, USA: International Society for Optics and Photonics, 2016, 9735: 973519.
[14] [14] ARGUMENT M. Femtosecond micromachining of glass and semiconductor materials[C]//Opto-Canada: SPIE Regional Meeting on Optoelectronics, Photonics, and Imaging. Ottawa, Canada: International Society for Optics and Photonics, 2017, 10313: 1031321.
[15] [15] CHUANG C F, CHEN K S. A new technique for creating curved interior holes on ultrathin glass based on picosecond laser drilling and thermo-shock separation[C]//2018 Symposium on Design, Test, Integration & Packaging of MEMS and MOEMS (DTIP). New York, USA: IEEE, 2018: 1-5.
[16] [16] ITO Y, SHINOMOTO R, NAGATO K, et al. Mechanisms of da-mage formation in glass in the process of femtosecond laser drilling[J]. Applied Physics, 2018, A124(2): 181.
[17] [17] WEI J, ZHANG B, LIU H, et al. Time-resolved shadowgraphic i-maging of femtosecond laser ablated micro-holes in silica glass[J]. Chinese Journal of Lasers, 2019, 46(5): 0508020(in Chinese).
[18] [18] KONO I, NAKANISHI A, WARISAWA S, et al. Study on non-crack laser machining of glass by using absorbent powder[C]//20th Annual Meeting of the American Society for Precision Engineering. Norfolk, USA: ASPE, 2005: 9-14.
[19] [19] ITO Y, YOSHIZAKI R, MIYAMOTO N, et al. Ultrafast and precision drilling of glass by selective absorption of fiber-laser pulse into femtosecond-laser-induced filament[J]. Applied Physics Letters, 2018, 113(6): 061101.
[20] [20] WANG H Zh, GUO P F, WU Sh, et al. Bottom-up drilling of transparent materials[J]. Chinese Journal of Lasers, 2020, 47(3): 0302003(in Chinese).
[21] [21] CVECEK K, DEHMEL S, MIYAMOTO I, et al. A review on glass welding by ultra-short laser pulses[J]. International Journal of Extreme Manufacturing, 2019, 1(4): 042001.
[22] [22] POHL L, von WITZENDORFF P, SUTTMANN O, et al. Automated laser-based glass fusing with powder additive[C]//International Congress on Applications of Lasers & Electro-Optics. Orlando, USA: Laser Institute of America, 2014: 528-532.
[23] [23] POHL L, von WITZENDORFF P, CHATZIZYRLI E, et al. CO2 laser welding of glass: Numerical simulation and experimental study[J]. The International Journal of Advanced Manufacturing Techno-logy, 2017, 90(1/4): 397-403.
[24] [24] de PABLOS-MARTN A, HCHE T. Laser welding of glasses using a nanosecond pulsed Nd∶YAG laser[J]. Optics and Lasers in Engineering, 2017, 90: 1-9.
[25] [25] ZHANG X, GUO L, ZHANG Q, et al. Investigation of the reaction mechanism and optical transparency in nanosecond laser welding of glasses assisted with titanium film[J]. Applied Optics, 2020, 59(4): 940-947.
[26] [26] de PABLOS-MARTN A, BENNDORF G, TISMER S, et al. Laser-welded fused silica substrates using a luminescent fresnoite-based sealant[J]. Optics & Laser Technology, 2016, 80: 176-185.
[27] [27] SUN K, SUN Sh Zh, QIU J R. Recent research progress in ultrashort pulsed laser welding of non-metallic materials[J]. Laser & Optoelectronics Progress, 2020, 57(11): 111411(in Chinese).
[28] [28] RICHTER S, DRING S, TNNERMANN A, et al. Bonding of glass with femtosecond laser pulses at high repetition rates[J]. A-pplied Physics, 2011, A103(2): 257-261.
[29] [29] DING T, WANG X H, WANG G D, et al. Welding of fused silica by using high repetition frequency femtosecond laser[J]. Chinese Journal of Lasers, 2018, 45(7): 10701007(in Chinese).
[30] [30] RICHTER S, ZIMMERMANN F, SUTTER D, et al. Ultrashort pulse laser welding of glasses without optical contacting[C]//Frontiers in Ultrafast Optics: Biomedical, Scientific, and Industrial A-pplications ⅩⅦ. Ottawa, Canada: International Society for Optics and Photonics, 2017, 10094: 1009411.
[31] [31] CHEN H, DENG L, DUAN J, et al. Picosecond laser welding of glasses with a large gap by a rapid oscillating scan[J]. Optics Le-tters, 2019, 44(10): 2570-2573.
[32] [32] YU M, HUANG T, XIAO Sh R. Long focal length green femtose-cond laser welding of glass[J]. Chinese Journal of Lasers, 2020, 47(9): 0902005(in Chinese).
[33] [33] CHEN J B. Principles of laser and its applications[M]. 4th ed. Beinjing: Publishing House of Electronics Industry, 2019: 1-333(in Chinese).
[34] [34] WATANABE W, LI Y, ITOH K. Ultrafast laser micro-processing of transparent material[J]. Optics & Laser Technology, 2016, 78: 52-61.
[35] [35] LIN Y. Exceptionally transparent superhydrophobic glass surfaces fabricated by ultrafast laser and their stability and durability[D]. Beijing: Tsinghua University, 2018: 1-80(in Chinese).
[36] [36] AHSAN M S, DEWANDA F, LEE M S, et al. Formation of superhydrophobic soda-lime glass surface using femtosecond laser pulses[J]. Applied Surface Science, 2013, 265: 784-789.
[37] [37] WANG B, HUA Y, YE Y, et al. Transparent superhydrophobic solar glass prepared by fabricating groove-shaped arrays on the surface[J]. Applied Surface Science, 2017, 426: 957-964.
[38] [38] HOU T J, AI J, LIU J G, et al. Selective preparation of metal co-pper layer on silicate glass by laser surface modification[J]. Laser Technology, 2018, 42(2): 176-180(in Chinese).
[39] [39] REINHARDT H M, MAIER P, KIM H C, et al. Nanostructured transparent conductive electrodes for applications in harsh environments fabricated via nanosecond laser-induced periodic surface structures (LIPSS) in indium-tin oxide films on glass[J]. Advanced Materials Interfaces, 2019, 6(16): 1900401.
[40] [40] SHAIKH S, SINGH D, SUBRAMANIAN M, et al. Femtosecond laser induced surface modification for prevention of bacterial adhesion on 45S5 bioactive glass[J]. Journal of Non-Crystalline Solids, 2018, 482: 63-72.
[41] [41] VILLAPU'N V M, QU B, LUND P A, et al. Optimizing the antimicrobial performance of metallic glass composites through surface texturing[J]. Materials Today Communications, 2020, 23: 101074.
[42] [42] ZHANG G, CHENG G, BHUYAN M K, et al. Ultrashort Bessel beam photoinscription of Bragg grating waveguides and their application as temperature sensors[J]. Photonics Research, 2019, 7(7): 806-814.
[43] [43] HUANG X, GUO Q, YANG D, et al. Reversible 3-D laser printing of perovskite quantum dots inside a transparent medium[J]. Nature Photonics, 2020, 14(2): 82-88.
[44] [44] LI Y, QU S. Femtosecond laser-induced breakdown in distilled water for fabricating the helical microchannels array[J]. Optics Le-tters, 2011, 36(21): 4236-4238.
[45] [45] TAN Y, CHU W, WANG P, et al. Water-assisted laser drilling of high-aspect-ratio 3-D microchannels in glass with spatiotemporally focused femtosecond laser pulses[J]. Optical Materials Express, 2019, 9(4): 1971-1978.
[46] [46] BROKMANN U, MILDE T, RDLEIN E, et al. Fabrication of 3-D microchannels for tissue engineering in photosensitive glass using NIR femtosecond laser radiation[J]. Biomedical Glasses, 2019, 5(1): 34-45.
[47] [47] QI J, LI W, CHU W, et al. A microfluidic mixer of high throughput fabricated in glass using femtosecond laser micromachining combined with glass bonding[J]. Micromachines, 2020, 11(2): 213.
Get Citation
Copy Citation Text
PANG Jiwei, WANG Chao, CAI Yukui. Research progress of laser processing technology for glass materials[J]. Laser Technology, 2021, 45(4): 417
Category:
Received: Aug. 27, 2020
Accepted: --
Published Online: Jul. 13, 2021
The Author Email: CAI Yukui (caiyukui@sdu.edu.cn)