The Journal of Light Scattering, Volume. 32, Issue 2, 189(2020)
First-principles Study of Phonon Spectra and Thermodynamic Properties of ZnX3(OH)6Cl2 (X = Co, Ni)
[1] [1] Braithwaite R S W, Mereiter K, Paar W H, et al. Herbertsmithite, ZnCu3(OH)6Cl2, a new species, and the definition of paratacamite[J]. Mineral Mag, 2004, 68(3):527-539.
[2] [2] Shores M P, Nytko E A, Bartlett B M, et al. A Structurally Perfect S=1/2 Kagome Antiferromagnet[J]. J Am Chem Soc, 2005, 127:13462-13463.
[3] [3] Singh R R P, Huse D A. Ground state of the spin-1/2 kagome-lattice Heisenberg antiferromagnet[J]. Phys. Rev. B, 2007, 76(18):180407.
[4] [4] Ran Y, Hermele M, Lee P A, et al. Projected-wave-function study of the spin-1/2 Heisenberg model on the Kagomé lattice[J]. Phys Rev Lett, 2007, 98(11):117205.
[5] [5] Jeschke H O, Salvatpujol F, Valentí R, et al. First-principles determination of Heisenberg Hamiltonian parameters for the spin-1/2 kagome antiferromagnet ZnCu3(OH)6Cl2 [J]. Phys Rev B, 2013, 88(7):4049-4057.
[6] [6] Helton J S, Nocera D G, Takano Y, et al. Spin Dynamics of the Spin-1/2 Kagome Lattice Antiferromagnet ZnCu3(OH)6Cl2[J]. Phys Rev Lett, 2007, 98(10):107204.
[7] [7] Mendels P, Bert F, De Vries M A, et al. Quantum Magnetism in the Paratacamite Family:Towards an Ideal Kagomé Lattice[J]. Phys Rev Lett, 2007, 98(7):077204.
[8] [8] Ofer O, Keren A, Nytko E A, et al. Ground state and excitation properties of the quantum kagom system ZnCu3(OH)6Cl2 investigated by local probes[J]. Neuroscience, 2006, 92(4):1343–1356.
[9] [9] Wulferding D, Lemmens P, Scheib P, et al. Interplay of thermal and quantum spin fluctuations on the kagome lattice[J]. Phys Rev B: Condensed Matter, 2010, 82(14):1456-1461.
[10] [10] Sushkov A B, Jenkins G S, Han T H, et al. Infrared phonons as a probe of spin-liquid states in herbertsmithite ZnCu3(OH)6Cl2[J]. J. Phys.: Condensed Matter, 2016, 125(5):921-932.
[11] [11] Kohn W, Sham L J. Self-consistent equation including exchange and correlation effects[J]. Phys Rev, 1965, 140: A1133.
[12] [12] Perdew J P, Burke K, Ernzerhof M. Generalized Gradient Approximation Made Simple [J]. Phys Rev Lett, 1996, 77: 3865-3868.
[13] [13] Fanidisa C, Van Dycka D, Van Landuyt J. Inelastic scattering of high-energy electrons of Crystal in thermal equilibrium with the environmet I. Theoretical framework[J]. Ultramicroscopy, 1992, 41: 55.
[14] [14] Baroni S, de Gironcoil S, Corso A, et al. Phonons and Related Crystal Properties from Density Function Perturbation Theory[J]. Rev Mod Phys, 2001, 73: 515-562.
[15] [15] Hafner J. Ab-initio Simulations of Materials using VASP: Density Functional Theory and Beyond[J]. J Comput Chem, 2008, 29: 2044-2078.
[16] [16] TOGO A. Phonopy[EB/OL]. (2009-7-30) [2015-4-10] http://phonopy. sourceforge.Net.
[17] [17] http://rruff.info/Herbertsmithite/R070099.
Get Citation
Copy Citation Text
DONG Xinyue, FENG Min, WANG Yufang. First-principles Study of Phonon Spectra and Thermodynamic Properties of ZnX3(OH)6Cl2 (X = Co, Ni)[J]. The Journal of Light Scattering, 2020, 32(2): 189
Category:
Received: Aug. 12, 2019
Accepted: --
Published Online: Feb. 7, 2021
The Author Email: Xinyue DONG (xydongxy@163.com)