Journal of Innovative Optical Health Sciences, Volume. 17, Issue 6, 2450008(2024)

Imaging of human parafoveal area with large field of view in adaptive optics line scanning ophthalmoscope

Wen Kong1,2、*, Yiwei Chen1,2, Guohua Shi1,2,3,4、**, and Yi He1,2、***
Author Affiliations
  • 1Department of Biomedical Engineering, University of Science and Technology of China, Hefei 230041, P. R. China
  • 2Jiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, P. R. China
  • 3Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, P. R. China
  • 4Key Laboratory of Myopia of State Health Ministry, and Key Laboratory of Visual Impairment and Restoration of Shanghai, Shanghai 200003, P. R. China
  • show less
    References(29)

    [1] S. Arichika, A. Uji, T. Murakami, N. Unoki, S. Yoshitake, Y. Dodo, S. Ooto, K. Miyamoto, N. Yoshimura. Retinal hemorheologic characterization of early-stage diabetic retinopathy using adaptive optics scanning laser ophthalmoscopy. Invest. Ophthalmol. Vis. Sci., 55, 8513-8522(2014).

    [2] R. Obata, Y. Yanagi. Quantitative analysis of cone photoreceptor distribution and its relationship with axial length, age, and early age-related macular degeneration. PLoS One,, 9, e91873(2014).

    [3] R. S. Weinhaus, J. M. Burke, F. C. Delori, D. M. Snodderly. Comparison of fluorescein angiography with microvascular anatomy of macaque retinas. Exp. Eye Res., 61, 1-16(1995).

    [4] R. A. Applegate, A. Bradley, W. J. van Heuven, B. L. Lee, C. A. Garcia. Entoptic evaluation of diabetic retinopathy. Invest. Ophthalmol., 38, 783-791(1997).

    [5] Y. Zheng, J. S. Gandhi, A. N. Stangos, C. Campa, D. M. Broadbent, S. P. Harding. Automated segmentation of foveal avascular zone in fundus fluorescein angiography. Invest. Opthalmol. Vis. Sci., 51, 3653(2010).

    [6] L. Kuehlewein, T. C. Tepelus, L. An, M. K. Durbin, S. Srinivas, S. R. Sadda. Noninvasive visualization and analysis of the human parafoveal capillary network using swept source OCT optical microangiography. Invest. Opthalmol. Vis. Sci., 56, 3984(2015).

    [7] A. Roorda. Applications of adaptive optics scanning laser ophthalmoscopy. Optom. Vis. Sci., 87, 260-268(2010).

    [8] D. R. Williams. Imaging single cells in the living retina. Vision Res., 51, 1379-1396(2011).

    [9] A. Roorda, J. L. Duncan. Adaptive optics ophthalmoscopy. Annu. Rev. Vis. Sci., 1, 19-50(2015).

    [10] J. Liang, D. R. Williams, D. T. Miller. Supernormal vision and high-resolution retinal imaging through adaptive optics. J. Opt. Soc. Am. A, 14, 2884(1997).

    [11] Y. He, M. Bao, Y. Chen, H. Ye, J. Fan, G. Shi. Accuracy characterization of Shack–Hartmann sensor with residual error removal in spherical wavefront calibration. Light Adv. Manuf., 4, 1(2023).

    [12] Y. Chen, Y. He, J. Wang, W. Li, L. Xing, X. Zhang, G. Shi. Automated cone photoreceptor cell identification in confocal adaptive optics scanning laser ophthalmoscope images based on object detection. J. Innov. Opt. Health Sci., 15, 2250001(2022).

    [13] A. I. Ramirez, R. De Hoz, E. Salobrar-Garcia, J. J. Salazar, B. Rojas, D. Ajoy, I. López-Cuenca, P. Rojas, A. Triviño, J. M. Ramírez. The role of microglia in retinal neurodegeneration: Alzheimer’s disease, Parkinson, and glaucoma. Front. Aging Neurosci., 9, 214(2017).

    [14] A. W. Stitt, T. M. Curtis, M. Chen, R. J. Medina, G. J. McKay, A. Jenkins, T. A. Gardiner, T. J. Lyons, H.-P. Hammes, R. Simó, N. Lois. The progress in understanding and treatment of diabetic retinopathy. Prog. Retin. Eye Res., 51, 156-186(2016).

    [15] E. Akyol, A. M. Hagag, S. Sivaprasad, A. J. Lotery. Adaptive optics: principles and applications in ophthalmology. Eye, 35, 244-264(2021).

    [16] M. Mujat, R. D. Ferguson, A. H. Patel, N. Iftimia, N. Lue, D. X. Hammer. High resolution multimodal clinical ophthalmic imaging system. Opt. Express, 18, 11607(2010).

    [17] J. Lu, B. Gu, X. Wang, Y. Zhang. High speed adaptive optics ophthalmoscopy with an anamorphic point spread function. Opt. Express, 26, 14356(2018).

    [18] B. Gu, X. Wang, M. D. Twa, J. Tam, C. A. Girkin, Y. Zhang. Noninvasive in vivo characterization of erythrocyte motion in human retinal capillaries using high-speed adaptive optics near-confocal imaging. Biomed. Opt. Express, 9, 3653(2018).

    [19] S. Yuan, J. Sasian. Aberrations of anamorphic optical systems II Primary aberration theory for cylindrical anamorphic systems. Appl. Opt., 48, 2836(2009).

    [20] A. Dubra, Y. Sulai. Reflective afocal broadband adaptive optics scanning ophthalmoscope. Biomed. Opt. Express, 2, 1757(2011).

    [21] F. C. Delori, R. H. Webb, D. H. Sliney. Maximum permissible exposures for ocular safety (ANSI 2000), with emphasis on ophthalmic devices. J. Opt. Soc. Am. A, 24, 1250(2007).

    [22] Y. W. Yuanyuan Wang, Y. H. Yi He, L. W. Ling Wei, X. L. Xiqi Li, J. Y. Jinsheng Yang, H. Z. Hong Zhou, Y. Z. Yudong Zhang. Bimorph deformable mirror based adaptive optics scanning laser ophthalmoscope for retina imaging in vivo. Chin. Opt. Lett., 15, 121102(2017).

    [23] E. A. Rossi, M. Chung, A. Dubra, J. J. Hunter, W. H. Merigan, D. R. Williams. Imaging retinal mosaics in the living eye. Eye, 25, 301-308(2011).

    [24] K. R. Dhakal, S. Walters, J. E. McGregor, C. Schwarz, J. M. Strazzeri, E. Aboualizadeh, B. Bateman, K. R. Huxlin, J. J. Hunter, D. R. Williams, W. H. Merigan. Localized photoreceptor ablation using femtosecond pulses focused with adaptive optics. Transl. Vis. Sci. Technol., 9, 16(2020).

    [25] E. Bakker et al. Adaptive optics ophthalmoscopy: A systematic review of vascular biomarkers. Surv. Ophthalmol., 67, 369-387(2022).

    [26] C. A. Curcio, K. R. Sloan, R. E. Kalina, A. E. Hendrickson. Human photoreceptor topography. J. Comp. Neurol., 292, 497-523(1990).

    [27] J. Tam, J. A. Martin, A. Roorda. Noninvasive visualization and analysis of parafoveal capillaries in humans. Investig. Opthalmol. Vis. Sci., 51, 1691(2010).

    [28] R. J. Zawadzki, P. Zhang, A. Zam, E. B. Miller, M. Goswami, X. Wang, R. S. Jonnal, S.-H. Lee, D. Y. Kim, J. G. Flannery, J. S. Werner, M. E. Burns, E. N. Pugh. Adaptive-optics SLO imaging combined with widefield OCT and SLO enables precise 3D localization of fluorescent cells in the mouse retina. Biomed. Opt. Express, 6, 2191(2015).

    [29] L. K. Young, T. J. Morris, C. D. Saunter, H. E. Smithson. Compact, modular and in-plane AOSLO for high-resolution retinal imaging. Biomed. Opt. Express, 9, 4275(2018).

    Tools

    Get Citation

    Copy Citation Text

    Wen Kong, Yiwei Chen, Guohua Shi, Yi He. Imaging of human parafoveal area with large field of view in adaptive optics line scanning ophthalmoscope[J]. Journal of Innovative Optical Health Sciences, 2024, 17(6): 2450008

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: Feb. 5, 2024

    Accepted: Apr. 10, 2024

    Published Online: Nov. 13, 2024

    The Author Email: Wen Kong (kongwen_work@163.com), Guohua Shi (ghshi_lab@sibet.ac.cn), Yi He (heyi@sibet.ac.cn)

    DOI:10.1142/S1793545824500081

    Topics