Opto-Electronic Engineering, Volume. 40, Issue 3, 94(2013)
Image Super-resolution Reconstruction Method via Mixture Gaussian Sparse Coding
[1] [1] ELAD M,AHARON M. Image denoising via sparse and redundant representation over learned dictionaries [J]. IEEE Transactions on Image Processing(S1057-7149),2006,15(12):3736-3745.
[2] [2] ZHAO M,LI S T. Hybrid inpainting algorithm based on sparse representation and fast inpainting method [J]. International Journal of Digital Content Technology and its Applications(S1975-9339),2011,5(7):239–247. http://www.gdgc.ac.cn
[3] [3] YANG J C,WRIGHT J,HUANG T,et al. Image super-resolution as sparse representation of raw image patches [C]// IEEE Computer Vision and Pattern Recognition (CVPR),June 23-28,2008,6:1-8.
[4] [4] YANG J C,WRIGHT J,HUANG T,et al. Image super-resolution via sparse representation [J]. IEEE Transactions on Image Processing(S1057-7149),2010,19(11):2861–2873.
[7] [7] YANG J C,WANG Z W,LIN Z,et al. Coupled dictionary training for image super-resolution [J]. IEEE Transactions on Image Processing(S1057-7149),2012,21(8):3467-3478.
[8] [8] ZEYDE R,ELAD M,PROTTER M. On single image scale-up using sparse-representations [C]// Lecture Notes in Computer Science: Curves & Surfaces,Avignon,France,2010:1-22.
[11] [11] GAO S H,TSANG I W H,CHIA L T,et al. Local features are not lonely-Laplacian sparse coding for image classification [C]// CVPR,2010,6:3551-3561.
[12] [12] WANG J J,YANG J C,YU K,et al. Locality-constrained linear coding for image classification [C]// CVPR,2010,6: 3360-3367.
[13] [13] DONG W S,ZHANG L,SHI G M. Centralized sparse representation for image restoration [C]// IEEE International Conference on Computer Vision (ICCV),Nov 6-13,2011,11:1259-1266.
[14] [14] WRIGHT J,MA Y. Dense error correction via l1 minimization [J]. IEEE Transactions on Information Theory(S0018-9448), 2010,56(7):3540–3560.
[15] [15] SHI Qinfeng,ERIKSSON A,HENGEL A,et al. Is face recognition really a compressive sensing problem [C]// IEEE Computer Vision and Pattern Recognition (CVPR),June 20-25,2011,6:553-560.
[16] [16] WRIGHT J,GANESH A,YANG A,et al. Sparsity and robustness in face recognition [C]// Available from: http://arxiv.org/abs/1111.1014.2011.
[17] [17] YANG M,ZHANG L,YANG J,et al. Robust sparse coding for face recognition [C]// CVPR,2011:625-632.
[18] [18] BOYD S,VANDENBERGHE L. Convex Optimization [M]. [S.l.]:Cambridge University Press,2009:291-293.
[19] [19] KIM S J,KOH K,LUSTIG M,et al. A interior-point method for large-scale l1-regularized least squares [J]. IEEE Journal of Selected Topics in Signal Processing(S1932-4553),2007,1(4):606–617.
[20] [20] AHARON M,ELAD M,BRUCKSTEIN A M. The K-SVD: An algorithm for designing of over-complete dictionaries for sparse representation [J]. IEEE Transactions on Signal Processing(S1053-587X),2006,54(11):4311-4322.
[21] [21] WANG J,ZHU S,GONG Y. Resolution enhancement based on learning the sparse association of image patches [J]. Pattern Recognition Letters,2010,31(1):1-10.
Get Citation
Copy Citation Text
XU Guoming, XUE Mogen, YUAN Guangling. Image Super-resolution Reconstruction Method via Mixture Gaussian Sparse Coding[J]. Opto-Electronic Engineering, 2013, 40(3): 94
Category:
Received: Oct. 31, 2012
Accepted: --
Published Online: Apr. 7, 2013
The Author Email: Guoming XU (xgm121@163.com)