Journal of Quantum Optics, Volume. 28, Issue 2, 96(2022)

Nonlocal Correlations for Hybrid Entanglement with Discrete and Continuous Variables

YANG Shou-bang*, SHEN Li-tuo, LIN Li-hua, YANG Zhen-biao, ZHONG Zhi-rong, and ZHENG Shi-biao
Author Affiliations
  • [in Chinese]
  • show less
    References(47)

    [1] [1] EINSTEIN A, PODOLSKY B, ROSEN N. Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?[J]. Phys Rev Lett, 1935, 47: 777. DOI: 10.1103/PhysRev.47.777.

    [2] [2] BELL J S. On the Einstein podolsky rosen paradox[J]. Physics, 1964, 1: 195. DOI: 10.1103/PhysicsPhysiqueFizika.1.195.

    [3] [3] BRUNNER N, CAVALCANTI D, PIRONIO S, et al. Bell nonlocality[J]. Rev Mod Phys, 2014, 86: 419-478. DOI: 10.1103/ RevModPhys.86.419.

    [4] [4] CLAUSER J F, HORNE M A, SHIMONY A, HOLT R A. Proposed experiment to test local hidden-variable theories[J]. Phys Rev Lett, 1969, 23: 880. DOI: 10.1103/PhysRevLett.23.880.

    [5] [5] ASPECT A, GRANGIER P, ROGER G. Experimental Tests of Realistic Local Theories via Bell’s Theorem[J]. Phys Rev Lett, 1981, 47: 460. DOI: 10.1103/PhysRevLett.47.460.

    [6] [6] GIUSTINA M, VERSTEEGH M A M, WENGEROWSKY S, et al. significant-loophole-free test of Bell’s theorem with entangled photons[J]. Phys Rev Lett, 2015, 115: 250401. DOI: 10.1103/PhysRevLett.115.250401.

    [7] [7] YIN J, CAO Y, LI Y H, et al. Satellite-based entanglement distribution over 1200 kilometers[J]. Science, 2017, 356: 1140. DOI: 10.1126/science.aan3211.

    [8] [8] CHRISTENSEN G, LIANG Y C, BRUNNER N, et al. Exploring the limits of quantum nonlocality with entangled photons[J]. Phys Rev X, 2015, 5: 041052. DOI: 10.1103/PhysRevX.5.041052.

    [9] [9] HENSEN B, BERNIEN H, DRAU A E, et al. loophole-free Bell inequality violation using electron spins separated by 1.3 kilometers[J]. Nature (London), 2015, 526: 682. DOI: 10.1038/nature15759.

    [10] [10] ROWE M A, KIELPINSKI D, MEYER V, et al. Experimental violation of a Bell’s inequality with efficient detection[J]. Nature (London), 2001, 409: 791. DOI: 10.1038/35057215.

    [11] [11] MATSUKEVICH N, MAUNZ P, MOEHRING D L, et al. Bell inequality violation with two remote atomic qubits[J]. Phys Rev Lett, 2008, 100: 150404. DOI: 10.1103/PhysRevLett.100.150404.

    [12] [12] BALANCE C J, SCHAFER V W, HOME J P, et al. Hybrid quantum logic and a test of Bell’s inequality using two different atomic isotopes[J]. Nature (London), 2015, 528: 384. DOI: 10.1038/nature16184.

    [13] [13] TAN T R, WAN Y, ERICKSON S, et al. Chained Bell Inequality Experiment with High-Efficiency Measurements[J]. Phys Rev Lett, 2017, 118: 130403. DOI: 10.1103/PhysRevLett.118.130403.

    [14] [14] LANYON B P, ZWERGER M, JURCEVIC P, et al. Experimental violation of multipartite Bell inequalities with trapped ions[J]. Phys Rev Lett, 2014, 112: 100403. DOI: 10.1103/PhysRevLett.112.100403.

    [15] [15] HOFMANN J, KRUG M, ORTEGEL N, et al. Heralded Entanglement Between Widely Separated Atoms[J]. Science, 2012, 337: 72. DOI: 10.1126/science.1221856.

    [16] [16] ANSMANN M, WANG H, BIALCZAK R C, et al. Violation of Bell’s inequality in Josephson phase qubits[J]. Nature (London), 2009, 461: 504. DOI: 10.1038/nature08363.

    [17] [17] CHOW J M, DICARLO L, GAMBETTA J M, et al. Detecting highly entangled states with a joint qubit readout[J]. Phys Rev A, 2010, 81: 062325. DOI: 10.1103/PhysRevA.81.062325.

    [18] [18] ZHONG Y P, CHANG H S, SATZINGER K J, et al. Violating Bell’s inequality with remotely connected superconducting qubits[J]. Nat Phys, 2019, 15: 741. DOI: 10.1038/s41567-019-0507-7.

    [19] [19] PFAFF W, TAMINIAU T H, ROBLEDO L, et al. Demonstration of entanglement-by-measurement of solid-state qubits[J]. Nat Phys, 2013, 9: 29. DOI: 10.1038/nphys2444.

    [20] [20] DEHOLLAIN J P, SIMMONS S, MUHONEN J T, et al. Bell’s inequality violation with spins in silicon[J]. Nat Nanotechnol, 2016, 11: 242. DOI: 10.1038/nnano.2015.262.

    [21] [21] HENSEN B, KALB N, BLOK M S, et al. Loophole-free Bell test using electron spins in diamond: second experiment and additional analysis[J]. Sci Rep, 2016, 6: 30289. DOI: 10.1038/ srep30289.

    [22] [22] BANASZEK K, WDKIEWICZ K. Testing Quantum Nonlocality in Phase Space[J]. Phys Rev A, 1998, 58: 4345. DOI: 10.1103/PhysRevA.58.4345.

    [23] [23] BANASZEK K, WDKIEWICZ K. Nonlocality of the Einstein-Podolsky-Rosen state in the Wigner representation[J]. Phys Rev Lett, 1999, 82: 2009. DOI: 10.1103/ PhysRevLett.82.2009.

    [24] [24] CHEN Z B, PAN J W, HOU G, ZHANG Y D. Maximal Violation of Bell’s Inequalities for Continuous Variable Systems[J]. Phys Rev Lett, 2002, 88: 040406. DOI: 10.1103/PhysRevLett.88.040406.

    [25] [25] JEONG H, SON W, KIM M S, AHN D, BRUKNER C. Quantum nonlocality test for continuous-variable states with dichotomic observables[J]. Phys Rev A, 2003, 67: 012106. DOI: 10.1103/PhysRevA.67. 012106.

    [26] [26] MILMAN P, AUFFEVES A, YAMAGUCHI F, et al. A proposal to test Bell’s inequalities with mesoscopic non-local states in cavity QED[J]. Eur Phys J D, 2005, 32: 233. DOI: 10.1140/epjd/e2004-00171-6.

    [27] [27] ZHONG Z R, SHENG J Q, LIN L H, ZHENG S B. Quantum nonlocality for entanglement of quasiclassical states[J]. Opt Lett, 2019, 44: 1726. DOI: 10.1364/ol.44.001726.

    [28] [28] SHENG J Q, LIN L H, ZHONG Z R, ZHENG S B. Nearly maximal violation of the Mermin-Klyshko inequality with multimode entangled coherent states[J]. Opt Express, 2019, 27: 31864. DOI: 10.1364/oe.27.031864.

    [29] [29] WANG C, GAO YVONNE Y, PHILIP R, et al. A Schrdinge cat living in two boxes[J]. Science, 2016, 352: 1087. DOI: 10.1126/science.aaf2941.

    [30] [30] SCHRDINGER E. Die gegenwrtige Situation in der Quantenmechanik[J]. Naturwissenschaften, 1935, 23, 823. DOI: 10.1007/ bf01491891.

    [31] [31] WDKIEWICZ K. Nonlocality of the Schrdinger cat[J]. New J Phys, 2000, 2: 21. DOI: 10.1088/1367-2630/2/1/321.

    [32] [32] BRUNE M, HAGLEY E, DREYER J, et al. Observing the Progressive Decoherence of the “Meter” in a Quantum Measurement[J]. Phys Rev Lett, 1996, 77: 4887. DOI: 10.1103/PhysRevLett.77.4887.

    [33] [33] DELGLISE S, DOTSENKO I, SAYRIN C, et al. Reconstruction of non-classical cavity field states with snapshots of their decoherence[J]. Nature (London), 2008, 455: 510. DOI: 10.1038/nature07288.

    [34] [34] VLASTAKIS B, KIRCHMAIR G, LEGHTAS Z, et al. Deterministically encoding quantum information using 100-photon Schrdinger cat states[J]. Science, 2013, 342: 607. DOI: 10.1126/science.1243289.

    [35] [35] SUN L, PETRENKO A, LEGHTAS Z, et al. Tracking Photon Jumps with Repeated Quantum Non-Demolition Parity Measurements[J]. Nature (London), 2014, 511: 444. DOI: 10.1038/nature13436.

    [36] [36] VLASTAKIS B, PETRENKO A , OFEK N, et al. Characterizing entanglement of an artificial atom and a cavity cat state with Bell’s inequality[J]. Nat Commun, 2015, 6: 8970. DOI: 10.1038/ncomms9970.

    [37] [37] LIU K, XU Y, WANG W, et al. A twofold quantum delayed-choice experiment in a superconducting circuit[J]. Sci Adv, 2017, 3: e1603159. DOI: 10.1126/sciadv.1603159.

    [38] [38] XU Y, MA Y, CAI W, et al. Demonstration of Controlled-Phase Gates between Two Error-Correctable Photonic Qubits[J]. Phys Rev Lett, 2020, 124: 120501. DOI: 10.1103/PhysRevLett.124.120501.

    [39] [39] MONROE C, MEEKHOF D M, KING B E, WINELAND D J. A “Schrdinger cat” superposition state of an atom[J]. Science, 1996, 272: 1131-1136. DOI: 10.1126/science.272.5265.1131.

    [40] [40] JOHNSON K G, WONG-CAMPOS J D, NEYENHUIS B, et al. Ultrafast creation of large Schrdinger cat states of an atom[J]. Nat Commun, 2017, 8: 697. DOI: 10.1038/s41467-017-00682-6.

    [41] [41] PARK J, SAUNDERS M, SHIN Y, et al. Bell inequality test with entanglement between an atom and a coherent state in a cavity[J]. Phys Rev A, 2012, 85: 022120. DOI: 10.1103/PhysRevA.85.022120.

    [42] [42] MA Y, PAN X, CAI W, et al. Manipulating complex hybrid entanglement and testing multipartite Bell inequalities in a superconducting circuit[J]. Phys Rev Lett, 2020, 125: 180503. DOI: 10.1103/PhysRevLett.125.180503.

    [43] [43] MERMIN N D. Extreme quantum entanglement in a superposition of macroscopically distinct states[J]. Phys Rev Lett, 1990, 65: 1838-1840. DOI: 10.1103/PhysRevLett.65.1838.

    [44] [44] BELINSKII A V, KLYSHKO D N. Interference of light and Bell’s theorem[J]. Phys Usp, 1993, 36: 653. DOI: 10.1070/ pu1993v036n08abeh002299.

    [45] [45] WOOTTERS W K. Entanglement of formation of an arbitrary state of two qubits[J]. Phys Rev Lett, 1998, 80: 2245. DOI: 10.1103/PhysRevLett.80.2245.

    [46] [46] GREENBERGER M, HORNE M A, SHIMONY A, ZEILINGER A. Bell’s theorem without inequalities[J]. Am J Phys, 1990, 58: 1131. DOI: 10.1119/1.16243.

    [47] [47] COLLINS D, GISIN N, POPESCU S, et al. Bell-type inequalities to detect truen-body nonseparability[J]. Phys Rev Lett, 2002, 88: 170405. DOI: 10.1103/physrevlett.88.170405.

    Tools

    Get Citation

    Copy Citation Text

    YANG Shou-bang, SHEN Li-tuo, LIN Li-hua, YANG Zhen-biao, ZHONG Zhi-rong, ZHENG Shi-biao. Nonlocal Correlations for Hybrid Entanglement with Discrete and Continuous Variables[J]. Journal of Quantum Optics, 2022, 28(2): 96

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Mar. 4, 2022

    Accepted: --

    Published Online: Oct. 14, 2022

    The Author Email: YANG Shou-bang (ysbscuphy@163.com)

    DOI:10.3788/jqo20222802.0102

    Topics