Laser & Optoelectronics Progress, Volume. 56, Issue 2, 021101(2019)

Hyperspectral Image Quality Evaluation Based on Multi-Model Fusion

Dongyu Xu1, Xiaorun Li1、*, Liaoying Zhao2, Rui Shu3, and Qijia Tang3
Author Affiliations
  • 1 College of Electrical Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
  • 2 Institute of Computer Application Technology, Hangzhou Dianzi University, Hangzhou, Zhejiang 310018, China
  • 3 Shanghai Institute of Satellite Engineering, Shanghai 200240, China
  • show less
    References(22)

    [1] Xu D. Hyperspectral remote sensing image denoising based on multiple linear regression and sparse representation[D]. Changsha: National University of Defense Technology(2013).

    [4] Pang S L. Research on image ambiguity evaluation Xi'an:[D]. Xidian University(2010).

    [13] Yin Y. Non-reference blur image quality assessment based on general regression neural network[J]. Laser & Infrared, 43, 466-470(2013).

    [16] Fan C L. Hyperspectral remote sensing image classification algorithm based on decision tree[D]. Qinhuangdao: Yanshan University(2014).

    [22] Li S. Research on remote sensing image quality evaluation method based on statistical distribution Xi'an:[D]. Xidian University(2017).

    Tools

    Get Citation

    Copy Citation Text

    Dongyu Xu, Xiaorun Li, Liaoying Zhao, Rui Shu, Qijia Tang. Hyperspectral Image Quality Evaluation Based on Multi-Model Fusion[J]. Laser & Optoelectronics Progress, 2019, 56(2): 021101

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Imaging Systems

    Received: Jul. 1, 2018

    Accepted: Jul. 26, 2018

    Published Online: Aug. 1, 2019

    The Author Email: Li Xiaorun (lxr@zju.edu.cn)

    DOI:10.3788/LOP56.021101

    Topics