Journal of Bioresources and Bioproducts, Volume. 10, Issue 2, 253(2025)
Structural characterization and immunomodulatory activities of polysaccharides from Russula vinosa lindblad extracted using KOH
[1] [1] Abaricia, J.O., Farzad, N., Heath, T.J., Simmons, J., Morandini, L., Olivares-Navarrete, R., 2021. Control of innate immune response by biomaterial surface topography, energy, and stiffness. Acta Biomater 133, 58-73.
[2] [2] Abuajah, C.I., Ogbonna, A.C., Osuji, C.M., 2015. Functional components and medicinal properties of food: a review. J. Food Sci. Technol. 52, 2522-2529.
[3] [3] Ayimbila, F., Keawsompong, S., 2023. Nutritional quality and biological application of mushroom protein as a novel protein alternative. Curr. Nutr. Rep. 12, 290-307.
[4] [4] Breda, L.S., de Melo Nascimento, J.E., Alves, V., de Alencar Arnaut de Toledo, V., de Lima, V.A., Felsner, M.L., 2024. Green and fast prediction of crude protein contents in bee pollen based on digital images combined with Random Forest algorithm. Food Res. Int. 179, 113958.
[5] [5] Casanova, E., Pel-Meziani, C., Guilminot, ., Mevellec, J.Y., Riquier-Bouclet, C., Vinotte, A., Lemoine, G., 2016. The use of vibrational spectroscopy techniques as a tool for the discrimination and identification of the natural and synthetic organic compounds used in conservation. Anal. Methods 8, 8514-8527.
[6] [6] Chen, H.W., Zhou, H.L., She, Z.Y., Lu, H.H., Wen, M.S., Wang, X.C., Wei, Z.J., Yang, S.Y., Guan, X., Tong, Y., Qin, Q.X., Zhu, P.C., Nong, Y.Y., Zhang, Q.S., 2024. Phytochemical and medicinal profiling ofRussula vinosaLindbl (RVL) using multiomics techniques. LWT-Food Sci. Technol. 192, 115723.
[7] [7] Chen, R.X., Xu, J.X., Wu, W.H., Wen, Y.X., Lu, S.Y., El-Seedi, H.R., Zhao, C., 2022. Structure-immunomodulatory activity relationships of dietary polysaccharides. Curr. Res. Food Sci. 5, 1330-1341.
[8] [8] Chen, S.Z., Saeed, A.F.U.H., Liu, Q., Jiang, Q., Xu, H.Z., Xiao, G.G., Rao, L., Duo, Y.H., 2023. Macrophages in immunoregulation and therapeutics. Signal Transduct. Target. Ther. 8, 207.
[9] [9] Chen, X.H., Xia, L.X., Zhou, H.B., Qiu, G.Z., 2010. Chemical composition and antioxidant activities ofRussula griseocarnosasp. nov. J. Agric. Food Chem. 58, 6966-6971.
[10] [10] Cheng, Y., Gan, J., Yan, B.W., Wang, P., Wu, H., Huang, C.X., 2024. Polysaccharides fromRussula: a review on extraction, purification, and bioactivities. Front. Nutr 11, 1406817.
[11] [11] Cong, Y.H., Wang, Y., Yuan, T., Zhang, Z., Ge, J.X., Meng, Q., Li, Z.Q., Sun, S., 2023. Macrophages in aseptic loosening: characteristics, functions, and mechanisms. Front. Immunol. 14, 1122057.
[12] [12] Deng, X.L., Liu, Q., Fu, Y.J., Luo, X., Hu, M.H., Ma, F.L., Wang, Q., Lai, X.P., Zhou, L., 2018. Effects ofLycium barbarumpolysaccharides with different molecular weights on function of RAW 264.7 macrophages. Food Agric. Immunol. 29, 808-820.
[13] [13] Fang, J.Q., Cao, Z.L., Song, X.X., Zhang, X.Y., Mai, B.Y., Wen, T.F., Lin, J.R., Chen, J.L., Chi, Y.G., Su, T., Xiao, F.X., 2020. Rhoifolin alleviates inflammation of acute inflammation animal models and LPS-induced RAW 264.7 cells via IKK/NF-B signaling pathway. Inflammation 43, 2191-2201.
[14] [14] Garca-Sobrino, R., Muoz, M., Rodrguez-Jara, E., Rams, J., Torres, B., Cifuentes, S.C., 2023. Bioabsorbable composites based on polymeric matrix (PLA and PCL) reinforced with magnesium (Mg) for use in bone regeneration therapy: physicochemical properties and biological evaluation. Polymers (Basel) 15, 4667.
[15] [15] Ghosh, D., Tanner, J., Lavoie, J.M., Garnier, G., Patti, A.F., 2021. An integrated approach for hemicellulose extraction from forest residue. BioResources 16, 2524-2547.
[16] [16] Gong, P., Wang, S.Y., Liu, M., Chen, F.X., Yang, W.J., Chang, X.N., Liu, N., Zhao, Y.Y., Wang, J., Chen, X.F., 2020. Extraction methods, chemical characterizations and biological activities of mushroom polysaccharides: a mini-review. Carbohydr. Res. 494, 108037.
[17] [17] Gonzlez, A., Cruz, M., Losoya, C., Nobre, C., Loredo, A., Rodrguez, R., Contreras, J., Belmares, R., 2020. Edible mushrooms as a novel protein source for functional foods. Food Funct 11, 7400-7414.
[18] [18] Han, C., Yang, J.K., Song, P.Y., Wang, X., Shi, W.Y., 2018. Effects ofSalvia miltiorrhizapolysaccharides on lipopolysaccharide-induced inflammatory factor release in RAW 264.7 cells. J. Interferon Cytokine Res. 38, 29-37.
[19] [19] Huang, C.X., Tang, S., Zhang, W.Y., Tao, Y.H., Lai, C.H., Li, X., Yong, Q., 2018. Unveiling the structural properties of lignin-carbohydrate complexes in bamboo residues and its functionality as antioxidants and immunostimulants. ACS Sustainable Chem. Eng. 6, 12522-12531.
[20] [20] Huo, Y.F., Li, Y.T., Xia, W., Wang, C., Xie, Y.Y., Wang, Y.B., Zhou, T., Fu, L.L., 2021. Degraded polysaccharides fromPorphyra haitanensis: purification, physico-chemical properties, antioxidant and immunomodulatory activities. Glycoconj. J. 38, 573-583.
[21] [21] Ketha, K., Gudipati, M., 2018a. Immunomodulatory activity of non starch polysaccharides isolated from green gram (Vigna radiata). Food Res. Int. 113, 269-276.
[22] [22] Ketha, K., Gudipati, M., 2018b. Purification, structural characterization of an arabinogalactan from green gram (Vigna radiata) and its role in macrophage activation. J. Funct. Foods 50, 127-136.
[23] [23] Kim, H.W., Shin, M.S., Lee, S.J., Park, H.R., Jee, H.S., Yoon, T.J., Shin, K.S., 2019. Signaling pathways associated with macrophage-activating polysaccharides purified from fermented barley. Int. J. Biol. Macromol. 131, 1084-1091.
[24] [24] Kuzmich, A.S., Romanenko, L.A., Kokoulin, M.S., 2023. Cell-cycle arrest and mitochondria-dependent apoptosis induction in T-47D cells by the capsular polysaccharide from the marine bacteriumKangiella japonicaKMM 3897. Carbohydr. Polym. 320, 121237.
[25] [25] Li, J.H., Jiang, X.Q., Li, H.J., Gelinsky, M., Gu, Z., 2021b. Tailoring materials for modulation of macrophage fate. Adv. Mater. 33, e2004172.
[26] [26] Li, M.Z., Huang, X.J., Wen, J.J., Chen, S.K., Wu, X.C., Ma, W.N., Cui, S.W., Xie, M.Y., Nie, S.P., 2023. Innate immune receptors co-recognition of polysaccharides initiates multi-pathway synergistic immune response. Carbohydr. Polym. 305, 120533.
[27] [27] Li, M.Z., Wen, J.J., Huang, X.J., Nie, Q.X., Wu, X.C., Ma, W.N., Nie, S.P., Xie, M.Y., 2022. Interaction between polysaccharides and toll-like receptor 4: primary structural role, immune balance perspective, and 3D interaction model hypothesis. Food Chem 374, 131586.
[28] [28] Li, N.Y., Wang, C.F., Georgiev, M.I., Bajpai, V.K., Tundis, R., Simal-Gandara, J., Lu, X.M., Xiao, J.B., Tang, X.Z., Qiao, X.G., 2021a. Advances in dietary polysaccharides as anticancer agents: structure-activity relationship. Trends Food Sci. Technol. 111, 360-377.
[29] [29] Li, X.Y., Wang, Z.Y., Wang, L., Walid, E., Zhang, H., 2012. In vitro antioxidant and anti-proliferation activities of polysaccharides from various extracts of different mushrooms. Int. J. Mol. Sci. 13, 5801-5817.
[30] [30] Liu, H., Xu, J.X., Xu, X.Y., Yuan, Z.H., Song, H., Yang, L.N., Zhu, D.S., 2023. Structure/function relationships of bean polysaccharides: a review. Crit. Rev. Food Sci. Nutr. 63, 330-344.
[31] [31] Liu, P.Q., Li, Y., Wang, W.L., Bai, Y.Z., Jia, H.M., Yuan, Z.W., Yang, Z.H., 2022. Role and mechanisms of the NF-B signaling pathway in various developmental processes. Biomed. Pharmacother. 153, 113513.
[32] [32] Liu, X., Dong, M.Y., Li, Y., Li, L.Z., Zhang, Y.F., Wang, C.Y., Wang, N., Wang, D., 2024. Structural properties of glucan fromRussula griseocarnosaand its immunomodulatory activities mediated via T cell differentiation. Carbohydr. Polym. 339, 122214.
[33] [33] Mu, H.B., Zhang, A.M., Zhang, W.X., Cui, G.T., Wang, S.C., Duan, J.Y., 2012. Antioxidative properties of crude polysaccharides fromInonotus obliquus. Int. J. Mol. Sci. 13, 9194-9206.
[34] [34] Nandi, A.K., Samanta, S., Maity, S., Sen, I.K., Khatua, S., Acharya, K., Maiti, T.K., Islam, S.S., 2014. Antioxidant and immunostimulant-glucan from edible mushroomRussula albonigra(Krombh.) Fr. Carbohydr. Polym 99, 774-782.
[35] [35] Nazia Auckloo, B., Wu, B., 2016. Structure, biological properties and applications of marine-derived polysaccharides. Curr. Org. Chem. 20, 2002-2012.
[36] [36] Panwar, S.S., Chauhan, J.K., Noopur, K., Panwar, N., Pradhan, K., Kumar, L., Panwar, A.S., 2024. Disease prevention in human through bioactive medicinal molecules of vegetables: a review. Indian Res. J. Ext. Edu. 24, 95-105.
[37] [37] Papoutsis, K., Grasso, S., Menon, A., Brunton, N.P., Lyng, J.G., Jacquier, J.C., Bhuyan, D.J., 2020. Recovery of ergosterol and vitamin D2 from mushroom waste-Potential valorization by food and pharmaceutical industries. Trends Food Sci. Technol. 99, 351-366.
[38] [38] Park, J., Min, J.S., Kim, B., Chae, U.B., Yun, J.W., Choi, M.S., Kong, I.K., Chang, K.T., Lee, D.S., 2015. Mitochondrial ROS govern the LPS-induced pro-inflammatory response in microglia cells by regulating MAPK and NF-B pathways. Neurosci. Lett. 584, 191-196.
[39] [39] Shanmugapriya, N., Balachandran, V., Revathi, B., Narayana, B., Salian, V.V., Vanasundari, K., Sivakumar, C., 2021. Quantum chemical calculation, performance of selective antimicrobial activity using molecular docking analysis, RDG and experimental (FT-IR, FT-Raman) investigation of 4-[{2-[3-(4-chlorophenyl)-5-(4-propan-2-yl) phenyl)-4, 5-dihydro-1H-pyrazol-1-yl]-4-oxo-1, 3-thiazol-5(4H)-ylidene}methyl]benzonitrile. Heliyon 7, e07634.
[40] [40] Shapouri-Moghaddam, A., Mohammadian, S., Vazini, H., Taghadosi, M., Esmaeili, S.A., Mardani, F., Seifi, B., Mohammadi, A., Afshari, J.T., Sahebkar, A., 2018. Macrophage plasticity, polarization, and function in health and disease. J. Cell. Physiol. 233, 6425-6440.
[41] [41] Shen, T., Wang, G.C., You, L., Zhang, L., Ren, H.W., Hu, W.C., Qiang, Q., Wang, X.F., Ji, L.L., Gu, Z.Z., Zhao, X.X., 2017. Polysaccharide from wheat bran induces cytokine expression via the toll-like receptor 4-mediated p38 MAPK signaling pathway and prevents cyclophosphamide-induced immunosuppression in mice. Food Nutr. Res. 61, 1344523.
[42] [42] Shi, L., Liu, Y., Zhang, Z.F., Li, Y.X., Wu, Y.M., Lu, Y.M., 2024. Structural characterization and immunomodulatory effects of polysaccharide PCP-1 fromPleurotus citrinopileatus. Starch Strke 76, 2300093.
[43] [43] Song, Q.Q., Jiang, L., Yang, X.Q., Huang, L.X., Yu, Y., Yu, Q., Chen, Y., Xie, J.H., 2019. Physicochemical and functional properties of a water-soluble polysaccharide extracted from Mung bean (Vignaradiate L.) and its antioxidant activity. Int. J. Biol. Macromol. 138, 874-880.
[44] [44] Sood, A., Gupta, A., Agrawal, G., 2021. Recent advances in polysaccharides based biomaterials for drug delivery and tissue engineering applications. Carbohydr. Polym. Technol. Appl. 2, 100067.
[45] [45] Sun, S.C., 2017. The non-canonical NF-B pathway in immunity and inflammation. Nat. Rev. Immunol. 17, 545-558.
[46] [46] Tao, Y.H., Wang, T., Huang, C.X., Lai, C.H., Ling, Z., Yong, Q., 2021. Effects of seleno-Sesbania canabinagalactomannan on anti-oxidative and immune function of macrophage. Carbohydr. Polym. 261, 117833.
[47] [47] Waktola, G., Temesgen, T., 2018. Application of mushroom as food and medicine. Adv. Biotechnol. Microbiol. 11, 555817.
[48] [48] Wang, L., He, C.Q., 2022. Nrf2-mediated anti-inflammatory polarization of macrophages as therapeutic targets for osteoarthritis. Front. Immunol. 13, 967193.
[49] [49] Wang, W.L., Tan, J.Q., Nima, L.M., Sang, Y.M., Cai, X., Xue, H.K., 2022. Polysaccharides from fungi: a review on their extraction, purification, structural features, and biological activities. Food Chem. X 15, 100414.
[50] [50] Wang, Y., Han, X., Li, Y.D., Wang, Y.B., Zhao, S.Y., Zhang, D.J., Lu, Y., 2017. Lentinan dose dependence between immunoprophylaxis and promotion of the murine liver cancer. Oncotarget 8, 95152-95162.
[51] [51] Wang, Z.C., Zhou, X.Y., Sheng, L.L., Zhang, D., Zheng, X.X., Pan, Y.P., Yu, X.X., Liang, X.N., Wang, Q., Wang, B.S., Li, N., 2023. Effect of ultrasonic degradation on the structural feature, physicochemical property and bioactivity of plant and microbial polysaccharides: a review. Int. J. Biol. Macromol. 236, 123924.
[52] [52] Wen, Z.S., Xiang, X.W., Jin, H.X., Guo, X.Y., Liu, L.J., Huang, Y.N., OuYang, X.K., Qu, Y.L., 2016. Composition and anti-inflammatory effect of polysaccharides fromSargassum horneriin RAW264.7 macrophages. Int. J. Biol. Macromol. 88, 403-413.
[53] [53] Xie, L.N., Liu, G.R., Huang, Z.B., Zhu, Z.Y., Yang, K.Y., Liang, Y.H., Xu, Y.N., Zhang, L.Y., Du, Z.Y., 2023.Tremella fuciformispolysaccharide induces apoptosis of B16 melanoma cells via promoting the M1 polarization of macrophages. Molecules 28, 4018.
[54] [54] Xie, Y.H., Wang, L.X., Sun, H., Wang, Y.X., Yang, Z.B., Zhang, G.G., Jiang, S.Z., Yang, W.R., 2019b. Polysaccharide from alfalfa activates RAW264.7 macrophages through MAPK and NF-B signaling pathways. Int. J. Biol. Macromol. 126, 960-968.
[55] [55] Xie, Z.L., Wang, Y., Huang, J.Q., Qian, N., Shen, G.Z., Chen, L.H., 2019a. Anti-inflammatory activity of polysaccharides fromPhellinus linteusby regulating the NF-B translocation in LPS-stimulated RAW 264.7 macrophages. Int. J. Biol. Macromol. 129, 61-67.
[56] [56] Yan, B.W., Deng, J.P., Gu, J., Tao, Y.H., Huang, C.X., Lai, C.H., Yong, Q., 2023. Comparison of structure and neuroprotective ability of low molecular weight galactomannans fromSesbania cannabinaobtained by different extraction technologies. Food Chem 427, 136642.
[57] [57] Yan, B.W., Wang, R., Fu, C.L., Huang, C.X., Lai, C.H., Yong, Q., 2024. Procuring the polysaccharides with anti-inflammatory bioactivity fromRussula vinosaLindblad by citric acid extraction. Food Biosci 59, 104079.
[58] [58] Yao, H.Y.Y., Wang, J.Q., Yin, J.Y., Nie, S.P., Xie, M.Y., 2021. A review of NMR analysis in polysaccharide structure and conformation: progress, challenge and perspective. Food Res. Int. 143, 110290.
[59] [59] Yao, Y., Zhu, Y.Y., Ren, G.X., 2016b. Immunoregulatory activities of polysaccharides from mung bean. Carbohydr. Polym. 139, 61-66.
[60] [60] Yao, Y., Zhu, Y.Y., Ren, G.X., 2016a. Antioxidant and immunoregulatory activity of alkali-extractable polysaccharides from mung bean. Int. J. Biol. Macromol. 84, 289-294.
[61] [61] Ye, Z.P., Wang, W., Yuan, Q.X., Ye, H., Sun, Y., Zhang, H.C., Zeng, X.X., 2016. Box-Behnken design for extraction optimization, characterization and in vitro antioxidant activity ofCicer arietinumL. hull polysaccharides. Carbohydr. Polym. 147, 354-364.
[62] [62] Zhang, H., Li, C.C., Lai, P.F.H., Chen, J.S., Xie, F., Xia, Y.J., Ai, L.Z., 2021a. Fractionation, chemical characterization and immunostimulatory activity of-glucan and galactoglucan fromRussula vinosaLindblad. Carbohydr. Polym. 256, 117559.
[63] [63] Zhang, H., Li, C.C., Lai, P.F.H., Xie, F., Xia, Y.J., Ai, L.Z., 2022. NMR elucidation of a water-soluble-(1→3, 1→6)-glucan fromRussula vinosaLindblad. Bioact. Carbohydr. Diet. Fibre 27, 100311.
[64] [64] Zhang, H., Zou, P., Zhao, H.T., Qiu, J.Q., Regenstein, J.M., Yang, X., 2021b. Isolation, purification, structure and antioxidant activity of polysaccharide from pinecones ofPinus koraiensis. Carbohydr. Polym. 251, 117078.
[65] [65] Zhang, J.Z., Liu, N., Sun, C., Sun, D.Q., Wang, Y.J., 2019. In: Polysaccharides fromPolygonatum sibiricumDelar. Ex Redoute induce an Immune Response in the RAW 264.7 Cell Line Via an NF-B/MAPK Pathway, 9. RSC Adv, pp. 17988-17994.
[66] [66] Zhang, M., Cui, S.W., Cheung, P.C.K., Wang, Q., 2007. Antitumor polysaccharides from mushrooms: a review on their isolation process, structural characteristics and antitumor activity. Trends Food Sci. Technol. 18, 4-19.
[67] [67] Zhang, M.M., Wu, W.J., Ren, Y., Li, X.F., Tang, Y.Q., Min, T., Lai, F.R., Wu, H., 2017. Structural characterization of a novel polysaccharide fromLepidium meyenii(Maca) and analysis of its regulatory function in macrophage polarization in vitro. J. Agric. Food Chem. 65, 1146-1157.
[68] [68] Zheng, C.M., Li, J.Q., Liu, H.G., Wang, Y.Z., 2023. Review of postharvest processing of edible wild-grown mushrooms. Food Res. Int. 173, 113223.
[69] [69] Zhou, H., Cheng, G.Q., Wang, Q.T., Guo, M.J., Zhuo, L., Yan, H.F., Li, G.J., Hou, C.L., 2022. Morphological characteristics and phylogeny reveal six new species inRussulasubgenusRussula(Russulaceae, Russulales) from Yanshan Mountains, North China. J. Fungi 8, 1283.
[70] [70] Zhou, J.H., Zhang, J.Y., Li, H.M., Sun, G.W., Liang, F.Z., 2013. Extraction of hemicellulose from corn stover by KOH solution pretreatment and its characterization. Adv. Mater. Res. 821, 1065-1070.
Get Citation
Copy Citation Text
Yan Bowen, Wu Hao, Zeng Kui, Huang Caoxing, Lai Chenhuan, Yong Qiang. Structural characterization and immunomodulatory activities of polysaccharides from Russula vinosa lindblad extracted using KOH[J]. Journal of Bioresources and Bioproducts, 2025, 10(2): 253
Category:
Received: --
Accepted: Aug. 26, 2025
Published Online: Aug. 26, 2025
The Author Email: