Laser & Optoelectronics Progress, Volume. 61, Issue 9, 0916003(2024)
Terahertz Metamaterial Filter Based on Laser-Induced Graphene
[1] Tonouchi M. Cutting-edge terahertz technology[J]. Nature Photonics, 1, 97-105(2007).
[2] Federici J, Moeller L. Review of terahertz and subterahertz wireless communications[J]. Journal of Applied Physics, 107, 111101(2010).
[3] Akyildiz I F, Jornet J M, Han C. Terahertz band: next frontier for wireless communications[J]. Physical Communication, 12, 16-32(2014).
[4] Fan K, Suen J Y, Liu X et al. All-dielectric metasurface absorbers for uncooled terahertz imaging[J]. Optica, 4, 601-604(2017).
[5] Castaldi G, Pacheco-Peña V, Moccia M et al. Exploiting space-time duality in the synthesis of impedance transformers via temporal metamaterials[J]. Nanophotonics, 10, 3687-3699(2021).
[6] Wang X C, Asadchy V S, Fan S H et al. Space-time metasurfaces for power combining of waves[J]. ACS Photonics, 8, 3034-3041(2021).
[7] Zhang J, Wei X Z, Rukhlenko I D et al. Electrically tunable metasurface with independent frequency and amplitude modulations[J]. ACS Photonics, 7, 265-271(2020).
[8] Li X J, Yin J, Liu J J et al. Resonant transparency of a planar anapole metamaterial at terahertz frequencies[J]. Photonics Research, 9, 125-130(2021).
[9] Liu J J, Hong Z. Mechanically tunable dual frequency THz metamaterial filter[J]. Optics Communications, 426, 598-601(2018).
[10] Pitchappa P, Kumar A, Singh R et al. Electromechanically tunable frequency-agile metamaterial bandpass filters for terahertz waves[J]. Advanced Optical Materials, 10, 2101544(2022).
[11] Zheng C L, Li J, Liu L H et al. Optically tunable terahertz metasurface absorber[J]. Annalen Der Physik, 534, 2200007(2022).
[12] Hu F R, Wang L, Quan B G et al. Design of a polarization insensitive multiband terahertz metamaterial absorber[J]. Journal of Physics D: Applied Physics, 46, 195103(2013).
[13] Yao W, Tang L L, Wang J et al. Spectrally and spatially tunable terahertz metasurface lens based on graphene surface plasmons[J]. IEEE Photonics Journal, 10, 4800909(2018).
[14] Xu T, Wu Y K, Luo X G et al. Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging[J]. Nature Communications, 1, 59(2010).
[15] Stantchev R I, Sun B Q, Hornett S M et al. Noninvasive, near-field terahertz imaging of hidden objects using a single-pixel detector[J]. Science Advances, 2, 1600190(2016).
[16] Wang Y, Cui Z J, Zhang X J et al. Excitation of surface plasmon resonance on multiwalled carbon nanotube metasurfaces for pesticide sensors[J]. ACS Applied Materials & Interfaces, 12, 52082-52088(2020).
[17] Lin S J, Xu X L, Hu F R et al. Using antibody modified terahertz metamaterial biosensor to detect concentration of carcinoembryonic antigen[J]. IEEE Journal of Selected Topics in Quantum Electronics, 27, 1-7(2021).
[18] Yang K, Liu S C, Arezoomandan S et al. Graphene-based tunable metamaterial terahertz filters[J]. Applied Physics Letters, 105, 093105(2014).
[19] Shin J H, Park K H, Ryu H C. Electrically controllable terahertz square-loop metamaterial based on VO₂ thin film[J]. Nanotechnology, 27, 195202(2016).
[20] Lin J, Peng Z W, Liu Y Y et al. Laser-induced porous graphene films from commercial polymers[J]. Nature Communications, 5, 5714(2014).
[21] Reina A, Jia X T, Ho J et al. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition[J]. Nano Letters, 9, 30-35(2009).
[22] Novoselov K S, Geim A K, Morozov S V et al. Electric field effect in atomically thin carbon films[J]. Science, 306, 666-669(2004).
[23] Peng Z W, Lin J, Ye R Q et al. Flexible and stackable laser-induced graphene supercapacitors[J]. ACS Applied Materials & Interfaces, 7, 3414-3419(2015).
[24] Song W X, Zhu J X, Gan B H et al. Flexible, stretchable, and transparent planar microsupercapacitors based on 3D porous laser-induced graphene[J]. Small, 14, 1702249(2018).
[25] Barber R, Cameron S, Devine A et al. Laser induced graphene sensors for assessing pH: application to wound management[J]. Electrochemistry Communications, 123, 106914(2021).
[26] Wang W T, Lu L S, Li Z H et al. Fingerprint-inspired strain sensor with balanced sensitivity and strain range using laser-induced graphene[J]. ACS Applied Materials & Interfaces, 14, 1315-1325(2022).
[27] Tao L Q, Tian H, Liu Y et al. An intelligent artificial throat with sound-sensing ability based on laser induced graphene[J]. Nature Communications, 8, 14579(2017).
[28] Huang L B, Xu S Y, Wang Z Y et al. Self-reporting and photothermally enhanced rapid bacterial killing on a laser-induced graphene mask[J]. ACS Nano, 14, 12045-12053(2020).
[29] Wang Z Y, Wang G C, Liu W G et al. Patterned laser induced graphene for terahertz wave modulation[J]. Journal of the Optical Society of America B, 37, 546-551(2019).
[30] Zhang R X, Zong G W, Wu S Y et al. Ultrathin flexible terahertz metamaterial bandstop filter based on laser-induced graphene[J]. Journal of the Optical Society of America B, 39, 1229-1232(2022).
[31] Lan J X, Zhang R X, Bai H et al. Tunable broadband terahertz absorber based on laser-induced graphene[J]. Chinese Optics Letters, 20, 073701(2022).
[32] Luo Y, He H, Li P et al. Graphene-controlled FeSe nanoparticles embedded in carbon nanofibers for high-performance potassium-ion batteries[J]. Science China Materials, 65, 1751-1760(2022).
Get Citation
Copy Citation Text
Xu Zhang, Ruiqi Song, Guwei Zong, Shuangyue Wu, Lei Wang. Terahertz Metamaterial Filter Based on Laser-Induced Graphene[J]. Laser & Optoelectronics Progress, 2024, 61(9): 0916003
Category: Materials
Received: Dec. 1, 2022
Accepted: Dec. 19, 2022
Published Online: May. 6, 2024
The Author Email: Lei Wang (wangl@njupt.edu.cn)
CSTR:32186.14.LOP223227