Laser & Optoelectronics Progress, Volume. 61, Issue 9, 0916003(2024)

Terahertz Metamaterial Filter Based on Laser-Induced Graphene

Xu Zhang1, Ruiqi Song1, Guwei Zong1, Shuangyue Wu1, and Lei Wang1,2,3、*
Author Affiliations
  • 1College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing 210023, Jiangsu, China
  • 2State Key Laboratory of Millimeter Waves, Southeast University, Nanjing 210096, Jiangsu, China
  • 3National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, Jiangsu, China
  • show less
    References(32)

    [1] Tonouchi M. Cutting-edge terahertz technology[J]. Nature Photonics, 1, 97-105(2007).

    [2] Federici J, Moeller L. Review of terahertz and subterahertz wireless communications[J]. Journal of Applied Physics, 107, 111101(2010).

    [3] Akyildiz I F, Jornet J M, Han C. Terahertz band: next frontier for wireless communications[J]. Physical Communication, 12, 16-32(2014).

    [4] Fan K, Suen J Y, Liu X et al. All-dielectric metasurface absorbers for uncooled terahertz imaging[J]. Optica, 4, 601-604(2017).

    [5] Castaldi G, Pacheco-Peña V, Moccia M et al. Exploiting space-time duality in the synthesis of impedance transformers via temporal metamaterials[J]. Nanophotonics, 10, 3687-3699(2021).

    [6] Wang X C, Asadchy V S, Fan S H et al. Space-time metasurfaces for power combining of waves[J]. ACS Photonics, 8, 3034-3041(2021).

    [7] Zhang J, Wei X Z, Rukhlenko I D et al. Electrically tunable metasurface with independent frequency and amplitude modulations[J]. ACS Photonics, 7, 265-271(2020).

    [8] Li X J, Yin J, Liu J J et al. Resonant transparency of a planar anapole metamaterial at terahertz frequencies[J]. Photonics Research, 9, 125-130(2021).

    [9] Liu J J, Hong Z. Mechanically tunable dual frequency THz metamaterial filter[J]. Optics Communications, 426, 598-601(2018).

    [10] Pitchappa P, Kumar A, Singh R et al. Electromechanically tunable frequency-agile metamaterial bandpass filters for terahertz waves[J]. Advanced Optical Materials, 10, 2101544(2022).

    [11] Zheng C L, Li J, Liu L H et al. Optically tunable terahertz metasurface absorber[J]. Annalen Der Physik, 534, 2200007(2022).

    [12] Hu F R, Wang L, Quan B G et al. Design of a polarization insensitive multiband terahertz metamaterial absorber[J]. Journal of Physics D: Applied Physics, 46, 195103(2013).

    [13] Yao W, Tang L L, Wang J et al. Spectrally and spatially tunable terahertz metasurface lens based on graphene surface plasmons[J]. IEEE Photonics Journal, 10, 4800909(2018).

    [14] Xu T, Wu Y K, Luo X G et al. Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging[J]. Nature Communications, 1, 59(2010).

    [15] Stantchev R I, Sun B Q, Hornett S M et al. Noninvasive, near-field terahertz imaging of hidden objects using a single-pixel detector[J]. Science Advances, 2, 1600190(2016).

    [16] Wang Y, Cui Z J, Zhang X J et al. Excitation of surface plasmon resonance on multiwalled carbon nanotube metasurfaces for pesticide sensors[J]. ACS Applied Materials & Interfaces, 12, 52082-52088(2020).

    [17] Lin S J, Xu X L, Hu F R et al. Using antibody modified terahertz metamaterial biosensor to detect concentration of carcinoembryonic antigen[J]. IEEE Journal of Selected Topics in Quantum Electronics, 27, 1-7(2021).

    [18] Yang K, Liu S C, Arezoomandan S et al. Graphene-based tunable metamaterial terahertz filters[J]. Applied Physics Letters, 105, 093105(2014).

    [19] Shin J H, Park K H, Ryu H C. Electrically controllable terahertz square-loop metamaterial based on VO₂ thin film[J]. Nanotechnology, 27, 195202(2016).

    [20] Lin J, Peng Z W, Liu Y Y et al. Laser-induced porous graphene films from commercial polymers[J]. Nature Communications, 5, 5714(2014).

    [21] Reina A, Jia X T, Ho J et al. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition[J]. Nano Letters, 9, 30-35(2009).

    [22] Novoselov K S, Geim A K, Morozov S V et al. Electric field effect in atomically thin carbon films[J]. Science, 306, 666-669(2004).

    [23] Peng Z W, Lin J, Ye R Q et al. Flexible and stackable laser-induced graphene supercapacitors[J]. ACS Applied Materials & Interfaces, 7, 3414-3419(2015).

    [24] Song W X, Zhu J X, Gan B H et al. Flexible, stretchable, and transparent planar microsupercapacitors based on 3D porous laser-induced graphene[J]. Small, 14, 1702249(2018).

    [25] Barber R, Cameron S, Devine A et al. Laser induced graphene sensors for assessing pH: application to wound management[J]. Electrochemistry Communications, 123, 106914(2021).

    [26] Wang W T, Lu L S, Li Z H et al. Fingerprint-inspired strain sensor with balanced sensitivity and strain range using laser-induced graphene[J]. ACS Applied Materials & Interfaces, 14, 1315-1325(2022).

    [27] Tao L Q, Tian H, Liu Y et al. An intelligent artificial throat with sound-sensing ability based on laser induced graphene[J]. Nature Communications, 8, 14579(2017).

    [28] Huang L B, Xu S Y, Wang Z Y et al. Self-reporting and photothermally enhanced rapid bacterial killing on a laser-induced graphene mask[J]. ACS Nano, 14, 12045-12053(2020).

    [29] Wang Z Y, Wang G C, Liu W G et al. Patterned laser induced graphene for terahertz wave modulation[J]. Journal of the Optical Society of America B, 37, 546-551(2019).

    [30] Zhang R X, Zong G W, Wu S Y et al. Ultrathin flexible terahertz metamaterial bandstop filter based on laser-induced graphene[J]. Journal of the Optical Society of America B, 39, 1229-1232(2022).

    [31] Lan J X, Zhang R X, Bai H et al. Tunable broadband terahertz absorber based on laser-induced graphene[J]. Chinese Optics Letters, 20, 073701(2022).

    [32] Luo Y, He H, Li P et al. Graphene-controlled FeSe nanoparticles embedded in carbon nanofibers for high-performance potassium-ion batteries[J]. Science China Materials, 65, 1751-1760(2022).

    Tools

    Get Citation

    Copy Citation Text

    Xu Zhang, Ruiqi Song, Guwei Zong, Shuangyue Wu, Lei Wang. Terahertz Metamaterial Filter Based on Laser-Induced Graphene[J]. Laser & Optoelectronics Progress, 2024, 61(9): 0916003

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Materials

    Received: Dec. 1, 2022

    Accepted: Dec. 19, 2022

    Published Online: May. 6, 2024

    The Author Email: Lei Wang (wangl@njupt.edu.cn)

    DOI:10.3788/LOP223227

    CSTR:32186.14.LOP223227

    Topics