Laser & Optoelectronics Progress, Volume. 59, Issue 22, 2210004(2022)

Lightweight Object Detection Method for Optical Remote Sensing Image

Hao Wang1,2、*, Zengshan Yin1,2, Guohua Liu1,2, Denghui Hu1, and Shuang Gao1,2
Author Affiliations
  • 1Innovation Academy for Microsatellite, Chinese Academy of Sciences, Shanghai 201203, China
  • 2University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    Figures & Tables(20)
    YOLOv5s network structure
    Prediction process of YOLOv5
    Schematic diagram of Ghost module
    Schematic diagram of FA module
    FABottleneck design
    Flow chart of sparse parameter adaptive channel pruning algorithm
    Samples in DOTA dataset
    Image before and after segmentation. (a) Image before segmentation; (b) image after segmentation
    Comparison of detection effect before and after adding FA module. (a) Before adding FA module; (b) after adding FA module
    Gamma parameter distribution before pruning
    Gamma parameter distribution after pruning
    • Table 1. Number of YOLOv5 modules of different versions

      View table

      Table 1. Number of YOLOv5 modules of different versions

      ModuleYOLOv5sYOLOv5mYOLOv5lYOLOv5x
      depth_multiple0.330.671.01.33
      width_multiple0.500.751.01.25
      Number of C3 in backbone1,3,32,6,63,9,94,12,12
      Number of C3 in neck1234
      Number of Conv32,64,128,256,51248,96,192,384,76864,128,256,512,102480,160,320,640,1280
    • Table 2. Comparison between YOLOv5s and Ghost-YOLOv5s

      View table

      Table 2. Comparison between YOLOv5s and Ghost-YOLOv5s

      ModelParameters /MBModel size /MBmAPPrecisionRecall
      YOLOv5s7.2314.20.6920.930.82
      Ghost-YOLOv5s5.911.60.6760.9290.82
    • Table 3. AP for different types of targets in YOLOv5s and Ghost-YOLOv5s

      View table

      Table 3. AP for different types of targets in YOLOv5s and Ghost-YOLOv5s

      Type of targetsAP for different types of targets (YOLOv5s)AP for different types of targets (Ghost-YOLOv5s)
      All classes mAP0.6920.676
      plane0.9420.939
      baseball_diamond0.7910.795
      bridge0.5430.518
      ground_track_field0.6530.589
      small_vehicle0.6000.586
      large_vehicle0.8060.799
      ship0.8780.871
      tennis_court0.9430.926
      basketball_court0.6830.657
      storage_tank0.7950.774
      soccer_ball_field0.5470.570
      roundabout0.7190.691
      harbor0.8190.825
      swimming_pool0.7110.718
      helicopter0.6380.532
      container_crane0.0120.019
    • Table 4. Comparison between Ghost-YOLOv5s and FA-YOLO

      View table

      Table 4. Comparison between Ghost-YOLOv5s and FA-YOLO

      ModelParameters /MBModel size /MBmAPPrecisionRecall
      Ghost-YOLOv5s5.911.60.6760.9290.82
      FA-YOLO3.757.640.6730.9470.79
    • Table 5. Comparison before and after adding FA module

      View table

      Table 5. Comparison before and after adding FA module

      ModelParameters /MBModel size /MBmAPPrecisionRecall
      FA-YOLO (without FA)3.737.540.6620.940.78
      FA-YOLO (with FA)3.757.640.6730.9470.79
    • Table 6. Comparison of network models under different pruning thresholds

      View table

      Table 6. Comparison of network models under different pruning thresholds

      mAPNumber of finetunePruning thresholdParameters /MBModel size /MB
      0.647200.053.436.99
      0.646200.13.186.49
      0.648200.152.555.29
      0.577200.21.413.11
      0.424200.250.852.05
    • Table 7. Comparison between Ghost-YOLOv5s and LW-YOLO

      View table

      Table 7. Comparison between Ghost-YOLOv5s and LW-YOLO

      ModelPrecisionRecallmAPParameters /MBModel size /MBMean inference time /s
      YOLOv5s0.930.820.6927.2314.25.4
      LW-YOLO0.9430.790.6482.555.295.2
    • Table 8. LW-YOLO network AP and mAP for different types of targets

      View table

      Table 8. LW-YOLO network AP and mAP for different types of targets

      Type of targetsAP for different types of targets
      All classes mAP0.648
      plane0.916
      baseball_diamond0.712
      bridge0.473
      ground_track_field0.514
      small_vehicle0.570
      large_vehicle0.787
      ship0.852
      tennis_court0.933
      basketball_court0.639
      storage_tank0.738
      soccer_ball_field0.470
      roundabout0.615
      harbor0.774
      swimming_pool0.681
      helicopter0.587
      container_crane0.110
    • Table 9. Statistics of number of targets in each category in training set

      View table

      Table 9. Statistics of number of targets in each category in training set

      Type of targetsNumber of targets
      plane8072
      baseball_diamond412
      bridge2075
      ground_track_field331
      small_vehicle126501
      large_vehicle22218
      ship32973
      tennis_court2425
      basketball_court529
      storage_tank5346
      soccer_ball_field338
      roundabout437
      harbor6016
      swimming_pool2181
      helicopter635
      container_crane142
    Tools

    Get Citation

    Copy Citation Text

    Hao Wang, Zengshan Yin, Guohua Liu, Denghui Hu, Shuang Gao. Lightweight Object Detection Method for Optical Remote Sensing Image[J]. Laser & Optoelectronics Progress, 2022, 59(22): 2210004

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Image Processing

    Received: Jul. 29, 2021

    Accepted: Sep. 28, 2021

    Published Online: Sep. 23, 2022

    The Author Email: Hao Wang (xidianwhgood@163.com)

    DOI:10.3788/LOP202259.2210004

    Topics