Laser Technology, Volume. 44, Issue 4, 447(2020)
Effect of scanning path on deformation of laser cladding coating on thin-walled part
[1] [1] CHEN X M, WANG H J, ZHOU X L, et al. Laser surface modification technology and research progress[J]. Materials Review, 2018,32(s1):341-344(in Chinese).
[2] [2] CHEN G G, HAN J X, LIU D D, et al. Research of fire resistance ability and fire test of the steel roof truss[J]. Building Structure, 2017,47(s2):227-231(in Chinese).
[3] [3] XING B, CHANG B H, DU D. Effects of process parameters on morphology of laser deposited layer on IC10 directionally solidified superalloy[J]. Transactions of the China Welding Institution, 2015,36(7):88-92(in Chinese).
[4] [4] LABUDOVIC M, HU D, KOVACEVIC R. A three dimensional model for direct laser metal powder deposition and rapid prototyping[J]. Journal of Materials Science, 2003,38(1):35-49.
[5] [5] MA Y Z, DONG Sh Y, XU B Sh, et al. Optimization of proceeding parameters in laser cladding Fe-based alloy[J]. China Surface Engineering, 2006,19(1):154-160(in Chinese).
[6] [6] ZHANG F Z, SUN W L, WANG K D, et al. Optimization of laser cladding repair process parameters for thin-wall parts[J]. Surface Technology,2019,48(1):168-174(in Chinese).
[7] [7] WANG L F, SUN Y X, ZHU G X, et al. Optimization simulation of process parameters on the residual stress in 316L stainless steel by laser cladding[J]. Applied Laser, 2019, 39(3): 376-380(in Chinese).
[8] [8] ZHANG G, WURIKAIXI A, JIANG H F. Review on deformation control in laser cladding forming process[J]. Hot Working Technology, 2019,48(2):14-17(in Chinese).
[9] [9] LIU T, YANG H O, WANG B, et al. Thermo-mechanical FEM simulation of me laser solid forming with different scanning patterns[J]. Foundry Technology, 2018, 39(7): 1505-1510(in Chinese).
[10] [10] HAN H, QI W J, DANG Y X, et al. Effect of path set on laser cladding temperature field and stress and strain field of 304 stainless steel[J]. Hot Working Technology, 2017, 46(12): 148-152(in Chinese).
[11] [11] DAI K, SHAW L. Thermal and mechanical finite element modeling of laser forming from metal and ceramic powders[J]. Acta Materialia, 2004,52(1):69-80.
[12] [12] QI H, YANG M, QI F. Numerical simulation of effects of scanning path on electron beam selective melting process of Ti-6Al-4V [J]. Transactions of the China Welding Institution,2009,30(8):5-8.
[13] [13] GONG X Y, YOU W, GAO Sh Y, et al. Numerical simulation of temperature field in laser cladding for different scanning path[J]. Journal of North China Institute of Science and Technology, 2016,13(5):48-54(in Chinese).
[14] [14] WANG Y Ch, SUN W L, HUANG Y, et al. Research of decision method of laser cladding sequence selection based on temperature field evaluation[J]. Laser Technology, 2018,42(5):605-610(in Chinese).
[15] [15] ZOU X B, YI D K, GU J J. Research on cracking of laser cladding[J]. Laser Journal, 2010,31(5):44-45(in Chinese).
[16] [16] OUYANG Z Y, LU G J, GUO L, et al. Simulation analysis of temperature distribution of laser welding and calculation of weld penetration depth[J]. Applied Laser, 2018,38(1):52-57(in Chinese).
Get Citation
Copy Citation Text
LIANG Zhigang, ZHAN Jinming, SHI Wenqing, XIE Yuping, HUANG Jiang, AN Fenju. Effect of scanning path on deformation of laser cladding coating on thin-walled part[J]. Laser Technology, 2020, 44(4): 447
Category:
Received: Jul. 29, 2019
Accepted: --
Published Online: Jul. 16, 2020
The Author Email: SHI Wenqing (swqafj@163.com)