Acta Optica Sinica, Volume. 44, Issue 19, 1925006(2024)
Thermoplasmonics Based on Metal Nanoparticles and Its Applications (Invited)
[3] Wang L, Feng Y J, Li Z et al. Nanoscale thermoplasmonic welding[J]. iScience, 25, 104422(2022).
[11] Baffou G, Quidant R, Girard C. Heat generation in plasmonic nanostructures: influence of morphology[J]. Applied Physics Letters, 94, 153109(2009).
[12] Baffou G, Rigneault H. Femtosecond-pulsed optical heating of gold nanoparticles[J]. Physical Review B, 84, 035415(2011).
[14] Xu H[M]. Nanophotonics: manipulating light with plasmons(2017).
[17] Pustovalov V K. Theoretical study of heating of spherical nanoparticle in media by short laser pulses[J]. Chemical Physics, 308, 103-108(2005).
[18] Volkov A N, Sevilla C, Zhigilei L V. Numerical modeling of short pulse laser interaction with Au nanoparticle surrounded by water[J]. Applied Surface Science, 253, 6394-6399(2007).
[19] Tchebotareva A L, Ruijgrok P V, Zijlstra P et al. Probing the acoustic vibrations of single metal nanoparticles by ultrashort laser pulses[J]. Laser & Photonics Reviews, 4, 581-597(2010).
[20] Lukianova-Hleb E, Hu Y, Latterini L et al. Plasmonic nanobubbles as transient vapor nanobubbles generated around plasmonic nanoparticles[J]. ACS Nano, 4, 2109-2123(2010).
[21] Wang J, Chen Y T, Chen X et al. Photothermal reshaping of gold nanoparticles in a plasmonic absorber[J]. Optics Express, 19, 14726-14734(2011).
[22] Setoura K, Okada Y, Werner D et al. Observation of nanoscale cooling effects by substrates and the surrounding media for single gold nanoparticles under CW-laser illumination[J]. ACS Nano, 7, 7874-7885(2013).
[24] Yao J C, Li Y, Wang S S et al. Thin-film-assisted photothermal deformation of gold nanoparticles: a facile and in-situ strategy for single-plate-based devices[J]. ACS Nano, 18, 10618-10624(2024).
[25] Wang Y X, Wang S S, Zhang S P et al. Plasmon-directed polymerization: regulating polymer growth with light[J]. Nano Research, 11, 6384-6390(2018).
[26] Adhikari S, Spaeth P, Kar A et al. Photothermal microscopy: imaging the optical absorption of single nanoparticles and single molecules[J]. ACS Nano, 14, 16414-16445(2020).
[27] Baffou G, Kreuzer M P, Kulzer F et al. Temperature mapping near plasmonic nanostructures using fluorescence polarization anisotropy[J]. Optics Express, 17, 3291-3298(2009).
[29] Beni G, Platzman P M. Temperature and polarization dependence of extended X-ray absorption fine-structure spectra[J]. Physical Review B, 14, 1514-1518(1976).
[30] Shafai G, Ortigoza M A, Rahman T S. Vibrations of Au13 and FeAu12 nanoparticles and the limits of the debye temperature concept[J]. Journal of Physics: Condensed Matter, 24, 104026(2012).
[31] Espinosa A, Castro G R, Reguera J et al. Photoactivated nanoscale temperature gradient detection using X-ray absorption spectroscopy as a direct nanothermometry method[J]. Nano Letters, 21, 769-777(2021).
[34] Desiatov B, Goykhman I, Levy U. Direct temperature mapping of nanoscale plasmonic devices[J]. Nano Letters, 14, 648-652(2014).
[41] Ali M R K, Wu Y, El-Sayed M A. Gold-nanoparticle-assisted plasmonic photothermal therapy advances toward clinical application[J]. The Journal of Physical Chemistry C, 123, 15375-15393(2019).
[46] Zhang L Y, Chen Y Y, Li Z L et al. Tailored synthesis of octopus-type Janus nanoparticles for synergistic actively-targeted and chemo-photothermal therapy[J]. Angewandte Chemie (International Ed. in English), 55, 2118-2121(2016).
[47] Harada M, Iwamoto K, Kitamori T et al. Photothermal microscopy with excitation and probe beams coaxial under the microscope and its application to microparticle analysis[J]. Analytical Chemistry, 65, 2938-2940(1993).
[51] Spaeth P, Adhikari S, Le L et al. Circular dichroism measurement of single metal nanoparticles using photothermal imaging[J]. Nano Letters, 19, 8934-8940(2019).
[52] Spaeth P, Adhikari S, Baaske M D et al. Photothermal circular dichroism of single nanoparticles rejecting linear dichroism by dual modulation[J]. ACS Nano, 15, 16277-16285(2021).
[53] Adhikari S, Orrit M. Optically probing the chirality of single plasmonic nanostructures and of single molecules: potential and obstacles[J]. ACS Photonics, 9, 3486-3497(2022).
[55] Qin Z P, Chan W C W, Boulware D R et al. Significantly improved analytical sensitivity of lateral flow immunoassays by using thermal contrast[J]. Angewandte Chemie (International Ed. in English), 51, 4358-4361(2012).
[57] Shokoufi N, Abbasgholi Nejad Asbaghi B, Abbasi-Ahd A. Microfluidic chip-photothermal lens microscopy for DNA hybridization assay using gold nanoparticles[J]. Analytical and Bioanalytical Chemistry, 411, 6119-6128(2019).
[71] Zhong Y L, Peng Y H, Chen J J et al. Optical temperature field-driven tweezers: principles and biomedical applications[J]. Acta Optica Sinica, 43, 1400001(2023).
[93] Wang S S, Ding T. Optical-force-directed single-particle-based track etching in polystyrene films[J]. Nanotechnology, 30, 305304(2019).
[95] Osaka Y, Sugano S, Hashimoto S. Plasmonic-heating-induced nanofabrication on glass substrates[J]. Nanoscale, 8, 18187-18196(2016).
[98] Wang S S, Xie Z P, Chen Z H et al. Photothermophoretic splitting of gold nanoparticles for plasmonic nanopores and nanonets sensing[J]. The Journal of Physical Chemistry Letters, 15, 6568-6574(2024).
[101] Wang S S, Yao J C, Lu X L et al. Light-induced solid-state protrusion of gold nanowires and their derivatives for sensing applications[J]. Advanced Optical Materials, 10, 2102238(2022).
[103] Shelonchik O, Lemcoff N, Shimoni R et al. Light-induced MOF synthesis enabling composite photothermal materials[J]. Nature Communications, 15, 1154(2024).
[104] Fedoruk M, Meixner M, Carretero-Palacios S et al. Nanolithography by plasmonic heating and optical manipulation of gold nanoparticles[J]. ACS Nano, 7, 7648-7653(2013).
[106] Aibara I, Mukai S, Hashimoto S. Plasmonic-heating-induced nanoscale phase separation of free poly (N-isopropylacrylamide) molecules[J]. The Journal of Physical Chemistry C, 120, 17745-17752(2016).
[107] Baffou G, Cichos F, Quidant R. Applications and challenges of thermoplasmonics[J]. Nature Materials, 19, 946-958(2020).
[108] Chen F Q, Yao J C, Wang X J et al. Fast modulation of surface plasmons based on the photothermal effect of nonvolatile solid thin films[J]. Nanoscale, 15, 476-482(2023).
[111] Chen F Q, Wang Y X, Wang S S et al. Plasmon-assisted nanopoling of poly (vinyl difluoride) films[J]. Advanced Optical Materials, 9, 2100084(2021).
Get Citation
Copy Citation Text
Tao Ding, Sitan Li, Yinqi Liu, Wenze Song, Xinyu Lin. Thermoplasmonics Based on Metal Nanoparticles and Its Applications (Invited)[J]. Acta Optica Sinica, 2024, 44(19): 1925006
Category: OPTOELECTRONICS
Received: May. 31, 2024
Accepted: Jul. 24, 2024
Published Online: Oct. 10, 2024
The Author Email: Ding Tao (t.ding@whu.edu.cn)
CSTR:32393.14.AOS241110