Chinese Journal of Lasers, Volume. 50, Issue 1, 0113003(2023)
Ultrafast Low-Energy Electron Holography Based on Coherent Electron Source
[1] Zewail A H. Four-dimensional electron microscopy[J]. Science, 328, 187-193(2010).
[2] Barwick B, Park H S, Kwon O H et al. 4D imaging of transient structures and morphologies in ultrafast electron microscopy[J]. Science, 322, 1227-1231(2008).
[3] Lobastov V A, Srinivasan R, Zewail A H. Four-dimensional ultrafast electron microscopy[J]. Proceedings of the National Academy of Sciences of the United States of America, 102, 7069-7073(2005).
[4] Yang D S, Mohammed O F, Zewail A H. Scanning ultrafast electron microscopy[J]. Proceedings of the National Academy of Sciences of the United States of America, 107, 14993-14998(2010).
[5] Lorenz U J, Zewail A H. Nanofluidics. Observing liquid flow in nanotubes by 4D electron microscopy[J]. Science, 344, 1496-1500(2014).
[6] Gao M, Lu C, Jean-Ruel H et al. Mapping molecular motions leading to charge delocalization with ultrabright electrons[J]. Nature, 496, 343-346(2013).
[7] Srinivasan R, Feenstra J S, Park S T et al. Dark structures in molecular radiationless transitions determined by ultrafast diffraction[J]. Science, 307, 558-563(2005).
[8] Ihee H, Lobastov V A, Gomez U M et al. Direct imaging of transient molecular structures with ultrafast diffraction[J]. Science, 291, 458-462(2001).
[9] van der Veen R M, Kwon O H, Tissot A et al. Single-nanoparticle phase transitions visualized by four-dimensional electron microscopy[J]. Nature Chemistry, 5, 395-402(2013).
[10] Fitzpatrick A W P, Vanacore G M, Zewail A H. Nanomechanics and intermolecular forces of amyloid revealed by four-dimensional electron microscopy[J]. Proceedings of the National Academy of Sciences of the United States of America, 112, 3380-3385(2015).
[11] Latychevskaia T. Holography and coherent diffraction imaging with low-(30-250 eV) and high-(80-300 keV) energy electrons: history, principles, and recent trends[J]. Materials, 13, 3089(2020).
[12] Hergert G, Wöste A, Groß P et al. Strong inelastic scattering of slow electrons by optical near fields of small nanostructures[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 54, 174001-174008(2021).
[13] Hergert G, Wöste A, Vogelsang J et al. Probing transient localized electromagnetic fields using low-energy point-projection electron microscopy[J]. ACS Photonics, 8, 2573-2580(2021).
[14] Longchamp J N, Latychevskaia T, Escher C et al. Graphene unit cell imaging by holographic coherent diffraction[J]. Physical Review Letters, 110, 255501(2013).
[15] Fink H W, Stocker W, Schmid H. Holography with low-energy electrons[J]. Physical Review Letters, 65, 1204-1206(1990).
[16] Gabor D. A new microscopic principle[J]. Nature, 161, 777-778(1948).
[17] Müller M, Kravtsov V, Paarmann A et al. Nanofocused plasmon-driven sub-10 fs electron point source[J]. ACS Photonics, 3, 611-619(2016).
[18] Müller M, Paarmann A, Ernstorfer R. Femtosecond electrons probing currents and atomic structure in nanomaterials[J]. Nature Communications, 5, 5292(2014).
[19] Hsu W H, Chang W T, Lin C Y et al. Low-energy electron point projection microscopy/diffraction study of suspended graphene[J]. Applied Surface Science, 423, 266-274(2017).
[20] Spence J C H, Qian W, Silverman M P. Electron source brightness and degeneracy from Fresnel fringes in field emission point projection microscopy[J]. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 12, 542-547(1994).
[21] Longchamp J N, Rauschenbach S, Abb S et al. Imaging proteins at the single-molecule level[J]. Proceedings of the National Academy of Sciences of the United States of America, 114, 1474-1479(2017).
[22] Fink H W, Schmid H, Ermantraut E et al. Electron holography of individual DNA molecules[J]. Journal of the Optical Society of America A, 14, 2168(1997).
[23] Longchamp J N, Latychevskaia T, Escher C et al. Low-energy electron transmission imaging of clusters on free-standing graphene[J]. Applied Physics Letters, 101, 113117(2012).
[24] Latychevskaia T, Wicki F, Longchamp J N et al. Direct observation of individual charges and their dynamics on graphene by low-energy electron holography[J]. Nano Letters, 16, 5469-5474(2016).
[25] Zhou S H, Chen K, Cole M et al. Ultrafast field-emission electron sources based on nanomaterials[J]. Advanced Materials, 31, 1805845(2019).
[26] Bainbridge A R, Barlow Myers C W, Bryan W A. Femtosecond few- to single-electron point-projection microscopy for nanoscale dynamic imaging[J]. Structural Dynamics, 3, 023612(2016).
[27] Gulde M, Schweda S, Storeck G et al. Ultrafast low-energy electron diffraction in transmission resolves polymer/graphene superstructure dynamics[J]. Science, 345, 200-204(2014).
[28] Quinonez E, Handali J, Barwick B. Femtosecond photoelectron point projection microscope[J]. Review of Scientific Instruments, 84, 103710(2013).
[29] Vogelsang J, Hergert G, Wang D et al. Observing charge separation in nanoantennas via ultrafast point-projection electron microscopy[J]. Light: Science & Applications, 7, 55(2018).
[30] Cho B, Ichimura T, Shimizu R et al. Quantitative evaluation of spatial coherence of the electron beam from low temperature field emitters[J]. Physical Review Letters, 92, 246103(2004).
[31] Siwick B J, Dwyer J R, Jordan R E et al. An atomic-level view of melting using femtosecond electron diffraction[J]. Science, 302, 1382-1385(2003).
[32] Ropers C, Solli D R, Schulz C P et al. Localized multiphoton emission of femtosecond electron pulses from metal nanotips[J]. Physical Review Letters, 98, 043907(2007).
[33] Schenk M, Krüger M, Hommelhoff P. Strong-field above-threshold photoemission from sharp metal tips[J]. Physical Review Letters, 105, 257601(2010).
[34] Barwick B, Corder C, Strohaber J et al. Laser-induced ultrafast electron emission from a field emission tip[J]. New Journal of Physics, 9, 142(2007).
[35] Yanagisawa H, Hafner C, Doná P et al. Optical control of field-emission sites by femtosecond laser pulses[J]. Physical Review Letters, 103, 257603(2009).
[36] Krüger M, Lemell C, Wachter G et al. Attosecond physics phenomena at nanometric tips[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 51, 172001(2018).
[37] Vogelsang J, Talebi N, Hergert G et al. Plasmonic-nanofocusing-based electron holography[J]. ACS Photonics, 5, 3584-3593(2018).
[38] Ehberger D, Hammer J, Eisele M et al. Highly coherent electron beam from a laser-triggered tungsten needle tip[J]. Physical Review Letters, 114, 227601(2015).
[39] Latychevskaia T, Fink H W. Practical algorithms for simulation and reconstruction of digital in-line holograms[J]. Applied Optics, 54, 2424-2434(2015).
[40] Latychevskaia T, Longchamp J N, Fink H W. When holography meets coherent diffraction imaging[J]. Optics Express, 20, 28871-28892(2012).
[41] Fink H W, Schmid H, Kreuzer H J et al. Atomic resolution in lensless low-energy electron holography[J]. Physical Review Letters, 67, 1543-1546(1991).
[42] Chang C C, Kuo H S, Hwang I S et al. A fully coherent electron beam from a noble-metal covered W(111) single-atom emitter[J]. Nanotechnology, 20, 115401(2009).
[43] Binh V T, Semet V. Interactions of low-energy coherent electron beams with nano-scale objects: a study by Fresnel projection microscopy[J]. Ultramicroscopy, 73, 107-117(1998).
[44] Zuo J M, Spence J C H. Electron sources[M]. Zuo J M, Spence J C H. Advanced transmission electron microscopy, 193-206(2016).
[45] Fowler R H, Nordheim L. Electron emission in intense electric fields[J]. Proceedings of the Royal Society A, 119, 173-181(1928).
[46] Schmid H, Fink H W. Carbon nanotubes are coherent electron sources[J]. Applied Physics Letters, 70, 2679-2680(1997).
[47] Yanagisawa H, Hengsberger M, Leuenberger D et al. Energy distribution curves of ultrafast laser-induced field emission and their implications for electron dynamics[J]. Physical Review Letters, 107, 087601(2011).
[48] Herink G, Solli D R, Gulde M et al. Field-driven photoemission from nanostructures quenches the quiver motion[J]. Nature, 483, 190-193(2012).
[49] Krüger M, Schenk M, Hommelhoff P. Attosecond control of electrons emitted from a nanoscale metal tip[J]. Nature, 475, 78-81(2011).
[50] Li C, Zhou X, Zhai F et al. Carbon nanotubes: carbon nanotubes as an ultrafast emitter with a narrow energy spread at optical frequency[J]. Advanced Materials, 29, 1701580(2017).
[51] Li C, Zhou X, Zhai F et al. Quiver-quenched optical-field-emission from carbon nanotubes[J]. Applied Physics Letters, 111, 133101(2017).
[52] Li C, Chen K, Guan M X et al. Extreme nonlinear strong-field photoemission from carbon nanotubes[J]. Nature Communications, 10, 4891(2019).
[53] Purcell S T, Binh V T, Garcia N. 64 meV measured energy dispersion from cold field emission nanotips[J]. Applied Physics Letters, 67, 436-438(1995).
[54] Esat T, Friedrich N, Tautz F S et al. A standing molecule as a single-electron field emitter[J]. Nature, 558, 573-576(2018).
[55] Duchet M, Perisanu S, Purcell S T et al. Femtosecond laser induced resonant tunneling in an individual quantum dot attached to a nanotip[J]. ACS Photonics, 8, 505-511(2021).
[56] Fink H W. Point source for ions and electrons[J]. Physica Scripta, 38, 260-263(1988).
[57] Vanacore G M, Fitzpatrick A W P, Zewail A H. Four-dimensional electron microscopy: ultrafast imaging, diffraction and spectroscopy in materials science and biology[J]. Nano Today, 11, 228-249(2016).
Get Citation
Copy Citation Text
Aiwei Wang, Chi Li, Qing Dai. Ultrafast Low-Energy Electron Holography Based on Coherent Electron Source[J]. Chinese Journal of Lasers, 2023, 50(1): 0113003
Category: micro and nano optics
Received: Oct. 31, 2022
Accepted: Dec. 10, 2022
Published Online: Jan. 13, 2023
The Author Email: Li Chi (daiq@nanoctr.cn), Dai Qing (lichi@nanoctr.cn)