Chinese Journal of Liquid Crystals and Displays, Volume. 37, Issue 3, 310(2022)

Research progress of electronically controlled gradient refractive index liquid crystal lens

SU Shu-zhao*, JIANG Hai-ming, XIA Hong-yan, SHEN Fang-cheng, and XIE Kang
Author Affiliations
  • [in Chinese]
  • show less
    References(71)

    [1] [1] LIN Y H, WANG Y J, RESHETNYAK V. Liquid crystal lenses with tunable focal length [J]. Liquid Crystals Reviews, 2017, 5(2): 111-143.

    [3] [3] IVANOV A V. Automatic computation of displacements of zoom lens movable components [C]//Proceedings of SPIE 3780, Optical Design and Analysis Software. Denver: SPIE, 1999: 191-198.

    [4] [4] ZHANG D Y, JUSTIS N, LO Y H. Fluidic adaptive zoom lens with high zoom ratio and widely tunable field of view [J]. Optics Communications, 2005, 249(1/3): 175-182.

    [5] [5] LENK L, MITSCHUNAS B, SINZINGER S. Zoom systems with tuneable lenses and linear lens movements [J]. Journal of the European Optical Society-Rapid Publications, 2019, 15(1): 9.

    [6] [6] NEIL I A. Review of recent zoom lens developments for 35 mm cinematography at panavision [J]. Optical Review, 2001, 8(4): 214-217.

    [8] [8] LIN C H, CHEN C H, CHIANG R H, et al. Dual-frequency liquid-crystal lenses based on a surface-relief dielectric structure on an electrode [J]. IEEE Photonics Technology Letters, 2011, 23(24): 1875-1877.

    [11] [11] KAWAMATA T, KAMIKAWA S, ISEKI H, et al. Flexible endoscope-assisted endonasal transsphenoidal surgery for pituitary tumors [J]. Minim Invasive Neurosurg, 2002, 45(4): 208-210.

    [12] [12] JIN Y H, KO K W, LEE W H. An indoor location-based positioning system using stereo vision with the drone camera [J]. Mobile Information Systems, 2018, 2018: 5160543.

    [13] [13] MENG L, HIRAYAMA T, OYANAGI S. Underwater-drone with panoramic camera for automatic fish recognition based on deep learning [J]. IEEE Access, 2018, 6: 17880-17886.

    [15] [15] ZHAO C H, SHI Y P, LI W J, et al. Research on one manual zoom liquid lens [C]//Proceedings of SPIE 8002, MIPPR 2011: Multispectral Image Acquisition, Processing, and Analysis. Guilin: SPIE, 2011: 800205.

    [16] [16] CHENG Y, CAO J, TANG X, et al. Optical zoom imaging systems using adaptive liquid lenses [J]. Bioinspiration & Biomimetics, 2021, 16(4): 041002.

    [17] [17] ZHANG W, LI D, GUO X. Optical design and optimization of a micro zoom system with liquid lenses [J]. Journal of the Optical Society of Korea, 2013, 17(5): 447-453.

    [18] [18] WANG D, XU J B, YUAN R Y, et al. High stability liquid lens with optical path modulation function [J]. Optics Express, 2021, 29(17): 27104-27117.

    [19] [19] KNITTEL J, RICHTER H, HAIN M, et al. A temperature controlled liquid crystal lens for spherical aberration compensation [J]. Microsystem Technologies, 2007, 13(2): 161-164.

    [20] [20] OZBEK H, USTUNEL S, KUTLU E, et al. A simple method to determine high-accuracy refractive indices of liquid crystals and the temperature behavior of the related optical parameters via high-resolution birefringence data [J]. Journal of Molecular Liquids, 2014, 199: 275-286.

    [21] [21] SATO S. Liquid-crystal lens-cells with variable focal length [J]. Japanese Journal of Applied Physics, 1979, 18(9): 1679-1684.

    [22] [22] NOSE T, MASUDA S, SATO S. Optical properties of a hybrid-aligned liquid crystal microlens [J]. Molecular Crystals and Liquid Crystals, 1991, 199(1): 27-35.

    [23] [23] WANG B, YE M, YAMAGUCHI M, et al. Thin liquid crystal lens with low driving voltages [J]. Japanese Journal of Applied Physics, 2009, 48(9R): 098004.

    [24] [24] WANG B, YE M, HONMA M, et al. Liquid crystal lens with spherical electrode [J]. Japanese Journal of Applied Physics, 2002, 41(11A): L1232.

    [25] [25] HWANG Y S, YOON T H, KIM J C. Design and fabrication of variable focusing lens array using liquid crystal for integral photography [J]. Japanese Journal of Applied Physics, 2003, 42(10R): 6434-6438.

    [26] [26] NEVSKAYA G E, TOMILIN M G. Adaptive lenses based on liquid crystals [J]. Journal of Optical Technology, 2008, 75(9): 563-573.

    [27] [27] JAMALI A, BRYANT D, BHOWMICK A K, et al. Large area liquid crystal lenses for correction of presbyopia [J]. Optics Express, 2020, 28(23): 33982-33993.

    [28] [28] GLEESON H F, KAUR S. Liquid crystal contact lenses with graphene electrodes and switchable focus [J]. MRS Advances, 2016, 1(52): 3509-3515.

    [29] [29] WANG B, YE M, SATO S. Liquid crystal lens with stacked structure of liquid-crystal layers [J]. Optics Communications, 2005, 250(4/6): 266-273.

    [30] [30] YE M, YOKOYAMA Y, SATO S. Liquid crystal anamorphic lens [J]. Japanese Journal of Applied Physics, 2005, 44(1R): 235-236.

    [31] [31] YE M, WANG B, UCHIDA M, et al. Low-voltage-driving liquid crystal lens [J]. Japanese Journal of Applied Physics, 2010, 49(10R): 100204.

    [32] [32] TAKAHASHI T, WANG B, YE M, et al. Aberration measurements of a liquid crystal lens prepared using a glass lens and liquid crystal layers [J]. Japanese Journal of Applied Physics, 2007, 46(5R): 3013-3015.

    [33] [33] KAWAMURA M, ITO Y. Liquid crystal lens with double circularly hole-patterned electrodes [J]. Molecular Crystals and Liquid Crystals, 2011, 542(1): 176/[698]-181/[703].

    [34] [34] WANG B, YE M, SATO S. Liquid crystal negative lens [J]. Japanese Journal of Applied Physics, 2005, 44(7R): 4979-4983.

    [35] [35] CHAO P C P, KAO Y Y, HSU C J. A new negative liquid crystal lens with multiple ring electrodes in unequal widths [J]. IEEE Photonics Journal, 2012, 4(1): 250-266.

    [36] [36] WANG B, YE M, SATO S. Liquid crystal lens with focal length variable from negative to positive values [J]. IEEE Photonics Technology Letters, 2006, 18(1): 79-81.

    [37] [37] HSU C J, JHANG J J, HUANG C Y. Large aperture liquid crystal lens with an imbedded floating ring electrode [J]. Optics Express, 2016, 24(15): 16722-16731.

    [38] [38] REN H W, FAN Y H, WU S T. Liquid-crystal microlens arrays using patterned polymer networks [J]. Optics Letters, 2004, 29(14): 1608-1610.

    [39] [39] PRESNYAKOV V V, GALSTIAN T V. Electrically tunable polymer stabilized liquid-crystal lens [J]. Journal of Applied Physics, 2005, 97(10): 103101.

    [40] [40] LIN H C, LIN Y H. An electrically tunable focusing liquid crystal lens with a built-in planar polymeric lens [J]. Applied Physics Letters, 2011, 98(8): 083503.

    [41] [41] REN H W, LIN Y H, FAN Y H, et al. Polarization-independent phase modulation using a polymer-dispersed liquid crystal [J]. Applied Physics Letters, 2005, 86(14): 141110.

    [42] [42] GUI K, ZHENG J H, WANG K N, et al. Electrically controlled fast response cascading tunable polymer dispersed liquid crystal focusing lenses [J]. Microwave and Optical Technology Letters, 2013, 55(12): 2830-2835.

    [43] [43] YE M, SATO S. Liquid crystal lens with insulator layers for focusing light waves of arbitrary polarizations [J]. Japanese Journal of Applied Physics, 2003, 42(10R): 6439-6440.

    [44] [44] LIN Y H, CHEN H S, LIN H C, et al. Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid crystals [J]. Applied Physics Letters, 2010, 96(11): 113505.

    [45] [45] REN H W, XU S, LIU Y F, et al. Switchable focus using a polymeric lenticular microlens array and a polarization rotator [J]. Optics Express, 2013, 21(7): 7916-7925.

    [46] [46] MUN B J, BAEK J H, LEE J H, et al. Low cell gap polymeric liquid crystal lens for 2-D/3-D switchable auto-stereoscopic display [J]. IEEE Transactions on Electron Devices, 2013, 60(10): 3430-3434.

    [47] [47] ZHU R D, XU S, HONG Q, et al. A polymer lens embedded 2D/3D switchable display with dramatically reduced crosstalk [J]. SID Symposium: Digest of Technology Papers, 2014, 45(1): 1363-1366.

    [48] [48] KAO Y Y, CHAO P C P, HSUEH C W. A new low-voltage-driven GRIN liquid crystal lens with multiple ring electrodes in unequal widths [J]. Optics Express, 2010, 18(18): 18506-18518.

    [49] [49] LEE C T, LI Y, LIN H Y, et al. Design of polarization-insensitive multi-electrode GRIN lens with a blue-phase liquid crystal [J]. Optics Express, 2011, 19(18): 17402-17407.

    [50] [50] JEONG I H, YU J H, LIM Y J, et al. Improving profile of multi-electrode Fresnel-type liquid crystal lens utilizing local control of pretilt angle [J]. Japanese Journal of Applied Physics, 2014, 53(6): 068003.

    [51] [51] CHU F, DOU H, TIAN L L, et al. A polarization-independent blue phase liquid crystal lens array with multi-electrode [J]. SID Symposium: Digest of Technology Papers, 2018, 49(1): 1725-1727.

    [52] [52] LI L W, BRYANT D, VAN HEUGTEN T, et al. Near-diffraction-limited tunable liquid crystal lens with simplified design [J]. Optical Engineering, 2013, 52(3): 035007.

    [53] [53] LEE C R, LO K C, MO T S. Electrically switchable Fresnel lens based on a liquid crystal film with a polymer relief pattern [J]. Japanese Journal of Applied Physics, 2007, 46(7R): 4144-4147.

    [54] [54] HUNG W C, CHEN Y J, LIN C H, et al. Sensitive voltage-dependent diffraction of a liquid crystal Fresnel lens [J]. Applied Optics, 2009, 48(11): 2094-2098.

    [55] [55] WEI X P, ZHENG J H, WANG Y N, et al. Multi-imaging characteristics of electrically controlled on-axis holographic polymer-dispersed liquid-crystal Fresnel lens [J]. Optical Engineering, 2015, 54(3): 037110.

    [56] [56] LOU Y M, LIU Q K, WANG H, et al. Rapid fabrication of an electrically switchable liquid crystal Fresnel zone lens [J]. Applied Optics, 2010, 49(26): 4995-5000.

    [57] [57] LI G Q, MATHINE D L, VALLEY P, et al. Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications [J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(16): 6100-6104.

    [58] [58] LI G Q, VALLEY P, GIRIDHAR M S, et al. Large-aperture switchable thin diffractive lens with interleaved electrode patterns [J]. Applied Physics Letters, 2006, 89(14): 141120.

    [59] [59] LI G Q, VALLEY P, YRS P, et al. High-efficiency switchable flat diffractive ophthalmic lens with three-layer electrode pattern and two-layer via structures [J]. Applied Physics Letters, 2007, 90(11): 111105.

    [60] [60] NAUMOV A F, LOKTEV M Y, GURALNIK I R, et al. Liquid-crystal adaptive lenses with modal control [J]. Optics Letters, 1998, 23(13): 992-994.

    [61] [61] VDOVIN G V, GURALNIK I R, KOTOVA S P, et al. Liquid-crystal lenses with a controlled focal length. II. Numerical optimisation and experiments [J]. Quantum Electronics, 1999, 29(3): 261-264.

    [62] [62] FRAVAL N, DE BOUGRENET DE LA TOCNAYE J L. Low aberrations symmetrical adaptive modal liquid crystal lens with short focal lengths [J]. Applied Optics, 2010, 49(15): 2778-2783.

    [63] [63] GALSTIAN T, ASATRYAN K, PRESNIAKOV V, et al. High optical quality electrically variable liquid crystal lens using an additional floating electrode [J]. Optics Letters, 2016, 41(14): 3265-3268.

    [66] [66] CHEN H S, WANG Y J, CHANG C M, et al. A polarizer-free liquid crystal lens exploiting an embedded-multilayered structure [J]. IEEE Photonics Technology Letters, 2015, 27(8): 899-902.

    [67] [67] REN H W, WU S T. Inhomogeneous nanoscale polymer-dispersed liquid crystals with gradient refractive index [J]. Applied Physics Letters, 2002, 81(19): 3537-3539.

    [68] [68] HONMA M, NOSE T. Liquid-crystal Fresnel zone plate fabricated by microrubbing [J]. Japanese Journal of Applied Physics, , 2005, 44(1R): 287-290.

    [71] [71] TABIRYAN N V, SERAK S V, NERSISYAN S R, et al. Broadband waveplate lenses [J]. Optics Express, 2016, 24(7): 7091-7102.

    [72] [72] PANCHARATNAM S. Achromatic combinations of birefringent plates. Part I. An achromatic circular polarizer [J]. Proceedings of the Indian Academy of Sciences - Section A, 1955, 41(4): 130-136.

    [73] [73] BAILEY J, MORGAN P B, GLEESON H F, et al. Switchable liquid crystal contact lenses for the correction of presbyopia [J]. Crystals, 2018, 8(1): 29.

    [74] [74] ZHAO Y Z, LI K X, DING S Y, et al. Advanced electro-optic properties of nematic liquid crystal doped with high birefringence liquid crystal molecules [J]. Molecular Crystals and Liquid Crystals, 2017, 658(1): 120-125.

    [75] [75] WU S T, HSU C S, SHYU K F. High birefringence and wide nematic range bis-tolane liquid crystals [J]. Applied Physics Letters, 1999, 74(3): 344-346.

    [76] [76] LIN C F, FANG Y B, SU W C. Design of LED free-form lens for sensor systems [J]. Sensors and Materials, 2020, 32(6): 2177-2185.

    [77] [77] LIN Y H, CHEN H S, CHEN M S, et al. Liquid crystals for ophthalmic lenses and biosensing applications [J]. SID Symposium: Digest of Technology Papers, 2014, 45(1): 563-566.

    Tools

    Get Citation

    Copy Citation Text

    SU Shu-zhao, JIANG Hai-ming, XIA Hong-yan, SHEN Fang-cheng, XIE Kang. Research progress of electronically controlled gradient refractive index liquid crystal lens[J]. Chinese Journal of Liquid Crystals and Displays, 2022, 37(3): 310

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Nov. 3, 2021

    Accepted: --

    Published Online: Jul. 21, 2022

    The Author Email: SU Shu-zhao (1241541822@qq.com)

    DOI:10.37188/cjlcd.2021-0278

    Topics