Chinese Journal of Lasers, Volume. 48, Issue 4, 0401006(2021)
Review of Research Developments and Important Applications of Laser-Driven Ion Acceleration
[3] Sarukura N, Ishida Y, Nakano H. Generation of 50-fsec pulses from a pulse-compressed, CW, passively mode-locked Ti∶sapphire laser[J]. Optics Letters, 16, 153-155(1991).
[5] Li S, Wang C, Liu Y Q et al. High-order dispersion control of 10-petawatt Ti∶sapphire laser facility[J]. Optics Express, 25, 17488-17498(2017).
[7] Papadopoulos D N, Ramirez P, Genevrier K et al. High-contrast 10 fs OPCPA-based front end for multi-PW laser chains[J]. Optics Letters, 42, 3530-3353(2017).
[10] Mourou G A, Tajima T, Bulanov S V. Optics in the relativistic regime[J]. Reviews of Modern Physics, 78, 309-371(2006).
[11] Sheng Z M[M]. Advances in high field laser physics(2014).
[12] Veksler V I. Coherent principle of acceleration of charged particles. [C]//Proceedings 1st International Conference on High-Energy Accelerators, June 11-23, 1956, CERN, Geneva, Switzerland. [S.l.: s.n.], 80-83(1956).
[13] Mako F, Tajima T. Collective ion acceleration by a reflexing electron beam: model and scaling[J]. Physics of Fluids, 27, 1815-1820(1984).
[17] Wilks S C, Kruer W L. Absorption of ultrashort, ultra-intense laser light by solids and overdense plasmas[J]. IEEE Journal of Quantum Electronics, 33, 1954-1968(1997).
[21] Mora P. Plasma expansion into a vacuum[J]. Physical Review Letters, 90, 185002(2003).
[28] Zou D B, Zhuo H B, Yang X H et al. Enhanced target normal sheath acceleration based on the laser relativistic self-focusing[J]. Physics of Plasmas, 21, 063103(2014).
[29] Bin J H, Ma W J, Wang H Y et al. Ion acceleration using relativistic pulse shaping in near-critical-density plasmas[J]. Physical Review Letters, 115, 064801(2015).
[30] Kaluza M, Schreiber J. Santala M I K, et al. Influence of the laser prepulse on proton acceleration in thin-foil experiments[J]. Physical Review Letters, 93, 045003(2004).
[43] Fang Y. Studies on proton beam accelerated by relativistic laser-solid interaction[D]. Shanghai: Shanghai Jiaotong University, 73-75(2017).
[45] Markey K. McKenna P, Brenner C M, et al. Spectral enhancement in the double pulse regime of laser proton acceleration[J]. Physical Review Letters, 105, 195008(2010).
[46] Bin J H, Ma W J, Wang H Y et al. Ion acceleration using relativistic pulse shaping in near-critical-density plasmas[J]. Physical Review Letters, 115, 064801(2015).
[47] Brenner C M. Robinson A P L, Markey K, et al. High energy conversion efficiency in laser-proton acceleration by controlling laser-energy deposition onto thin foil targets[J]. Applied Physics Letters, 104, 081123(2014).
[50] Obcemea C. Potential clinical impact of laser-accelerated beams in cancer ion therapy[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 829, 149-152(2016).
[61] Yan X Q, Lin C, Sheng Z M et al. Generating high-current monoenergetic proton beams by a circularly polarized laser pulse in the phase-stable acceleration regime[J]. Physical Review Letters, 100, 135003(2008).
[66] Chen M, Pukhov A, Yu T P et al. Enhanced collimated GeV monoenergetic ion acceleration from a shaped foil target irradiated by a circularly polarized laser pulse[J]. Physical Review Letters, 103, 024801(2009).
[68] Yu T P, Pukhov A, Shvets G et al. Stable laser-driven proton beam acceleration from a two-ion-species ultrathin foil[J]. Physical Review Letters, 105, 065002(2010).
[75] Qiao B, Zepf M, Borghesi M et al. Dominance of radiation pressure in ion acceleration with linearly polarized pulses at intensities of 10 21 W/cm 2[J]. Physical Review Letters, 108, 115002(2012).
[83] Wu D, Zheng C Y, Qiao B et al. Suppression of transverse ablative Rayleigh-Taylor-like instability in the hole-boring radiation pressure acceleration by using elliptically polarized laser pulses[J]. Physical Review E, 90, 023101(2014).
[104] Zhang W L, Qiao B, Shen X F et al. Generation of quasi-monoenergetic heavy ion beams via staged shock wave acceleration driven by intense laser pulses in near-critical plasmas[J]. New Journal of Physics, 18, 093029(2016).
[112] Yin L, Albright B J, Hegelich B M et al. GeV laser ion acceleration from ultrathin targets: the laser break-out afterburner[J]. Laser and Particle Beams, 24, 291-298(2006).
[113] Yin L, Albright B J, Hegelich B M et al. Monoenergetic and GeV ion acceleration from the laser breakout afterburner using ultrathin targets[J]. Physics of Plasmas, 14, 056706(2007).
[125] Wang W Q, Yin Y, Zou D B et al. Proton focusing driven by laser triggered Coulomb explosion[J]. Physics of Plasmas, 24, 030703(2017).
[129] Yu L L, Xu H, Wang W M et al. Generation of tens of GeV quasi-monoenergetic proton beams from a moving double layer formed by ultraintense lasers at intensity 10 21-10 23 W·cm -2[J]. New Journal of Physics, 12, 045021(2010).
[138] Shen B F[M]. The physics of inertial fusion(2008).
[144] Key M H, Freeman R R, Hatchett S P et al. Proton fast ignition[J]. Fusion Science and Technology, 49, 440-452(2006).
[158] Würl M, Gianoli C, Englbrecht F S et al. A Monte Carlo feasibility study on quantitative laser-driven proton radiography[M]. //Schad L. Zeitschrift für medizinische physik. Amsterdam: Elsevier(2020).
[161] Li Q, Liu X G. D Z Y, et al. Progress in heavy ion cancer therapy at IMP. [C]//AIP Conference Proceedings, 1533, 174(2013).
[162] Zhang Q N, Zhang H, Gao L Y et al. C]//Compendium of papers of the 8th Chinese Oncology Academic Conference and the 13th Cross-strait Oncology Academic Conference, September 11, 2014. [S.l.: s.n.], 831-832(2014).
[163] Ledingham K W. McKenna P, Singhal R P. Applications for nuclear phenomena generated by ultra-intense lasers[J]. Science, 300, 1107-1111(2003).
[164] Yang J M. McKenna P, Ledingham K W D, et al. Neutron production by fast protons from ultra-intense laser-plasma interactions[J]. Journal of Applied Physics, 96, 6912-6918(2004).
[168] Shao F Q[M]. The particle-in-cell simulation of plasmas(2002).
[172] Deng X W. C]//2017 Edition of the Annual Report of The Chinese Academy of Engineering Physics. [S.l.: s.n.], 137-147(2018).
Get Citation
Copy Citation Text
Yanting Hu, Hao Zhang, Hongxiang Deng, Fuqiu Shao, Tongpu Yu. Review of Research Developments and Important Applications of Laser-Driven Ion Acceleration[J]. Chinese Journal of Lasers, 2021, 48(4): 0401006
Special Issue: SPECIAL ISSUE FOR "NATIONAL UNIVERSITY OF DEFENSE TECHNOLOGY"
Received: Sep. 2, 2020
Accepted: Oct. 10, 2020
Published Online: Feb. 3, 2021
The Author Email: Yu Tongpu (tongpu@nudt.edu.cn)