Journal of Synthetic Crystals, Volume. 52, Issue 2, 252(2023)
Band Gap Characteristics of h-BN Superlattice Plasma Photonic Crystals
[1] [1] JOHN S. Strong localization of photons in certain disordered dielectric superlattices[J]. Physical Review Letters, 1987, 58(23): 2486-2489.
[2] [2] YABLONOVITCH E. How to be truly photonic[J]. Science, 2000, 289: 557- 559.
[10] [10] MOUSSA R, FOTEINOPOULOU S, ZHANG L, et al. Negative refraction and superlens behavior in a two-dimensional photonic crystal[J]. Physical Review B-Condensed Matter and Materials Physics, 2005, 71(8): 085106.
[11] [11] ANDERSON C M, GIAPIS K P. Larger two-dimensional photonic band gaps[J]. Physical Review Letters, 1996, 77(14): 2949-2952.
[14] [14] WANG B, CAPPELLI M A. A tunable microwave plasma photonic crystal filter[J]. Applied Physics Letters, 2015, 107(17): 171107.
[15] [15] YIN Y, XU H, YU M Y, et al. Bandgap characteristics of one-dimensional plasma photonic crystal[J]. Physics of Plasmas, 2009, 16(10): 102103.
[16] [16] SHUKLA S, PRASAD S, SINGH V. Properties of surface modes in one dimensional plasma photonic crystals[J]. Physics of Plasmas, 2015, 22(2): 022122.
[20] [20] SAKAI O, TACHIBANA K. Plasmas as metamaterials: a review[J]. Plasma Sources Science and Technology, 2012, 21(1): 013001.
[21] [21] SAKAI O, SAKAGUCHI T, TACHIBANA K. Verification of a plasma photonic crystal for microwaves of millimeter wavelength range using two-dimensional array of columnar microplasmas[J]. Applied Physics Letters, 2005, 87(24): 241505.
[22] [22] WANG B, CAPPELLI M A. A plasma photonic crystal bandgap device[J]. Applied Physics Letters, 2016, 108(16): 161101.
[23] [23] WANG B, RODRGUEZ J A, CAPPELLI M A. 3D woodpile structure tunable plasma photonic crystal[J]. Plasma Sources Science and Technology, 2019, 28(2): 02LT01.
[24] [24] WANG B, RODRGUEZ J A, MILLER O, et al. Reconfigurable plasma-dielectric hybrid photonic crystal as a platform for electromagnetic wave manipulation and computing[J]. Physics of Plasmas, 2021, 28(4): 043502.
[25] [25] MATLIS E H, CORKE T C, NEISWANDER B, et al. Electromagnetic wave transmittance control using self-organized plasma lattice metamaterial[J]. Journal of Applied Physics, 2018, 124(9): 093104.
[26] [26] TAN H Y, JIN C G, ZHUGE L J, et al. Air-like plasma frequency in one-dimensional plasma photonic crystals[J]. Physics of Plasmas, 2019, 26(5): 052107.
[27] [27] ZHANG L, OUYANG J T. Experiment and simulation on one-dimensional plasma photonic crystals[J]. Physics of Plasmas, 2014, 21(10): 103514.
[28] [28] ZHANG W D, WANG H T, ZHAO X L, et al. Bandgap-tunable device realized by ternary plasma photonic crystals arrays[J]. Physics of Plasmas, 2020, 27(6): 063508.
[29] [29] YAO J F, YUAN C X, LI H, et al. 1D photonic crystal filled with low-temperature plasma for controlling broadband microwave transmission[J]. AIP Advances, 2019, 9(6): 065302.
[30] [30] WANG R G, LI B, ZHANG T K, et al. The influence of defects in a plasma photonic crystal on the characteristics of microwave transmittance[J]. Plasma Science and Technology, 2020, 22(8): 41-48.
[31] [31] WU Z C, DONG M F, FAN W L, et al. Microwave transmittance characteristics in different uniquely designed one-dimensional plasma photonic crystals[J]. Plasma Science and Technology, 2021, 23(6): 117-124.
Get Citation
Copy Citation Text
WU Zhenyu, JIA Mengmeng, HOU Xiaohan, LIU Fucheng, FAN Weili. Band Gap Characteristics of h-BN Superlattice Plasma Photonic Crystals[J]. Journal of Synthetic Crystals, 2023, 52(2): 252
Category:
Received: Oct. 14, 2022
Accepted: --
Published Online: Mar. 18, 2023
The Author Email: Zhenyu WU (1120072308@qq.com)
CSTR:32186.14.