Journal of Synthetic Crystals, Volume. 52, Issue 2, 252(2023)

Band Gap Characteristics of h-BN Superlattice Plasma Photonic Crystals

WU Zhenyu*, JIA Mengmeng, HOU Xiaohan, LIU Fucheng, and FAN Weili
Author Affiliations
  • [in Chinese]
  • show less
    References(22)

    [1] [1] JOHN S. Strong localization of photons in certain disordered dielectric superlattices[J]. Physical Review Letters, 1987, 58(23): 2486-2489.

    [2] [2] YABLONOVITCH E. How to be truly photonic[J]. Science, 2000, 289: 557- 559.

    [10] [10] MOUSSA R, FOTEINOPOULOU S, ZHANG L, et al. Negative refraction and superlens behavior in a two-dimensional photonic crystal[J]. Physical Review B-Condensed Matter and Materials Physics, 2005, 71(8): 085106.

    [11] [11] ANDERSON C M, GIAPIS K P. Larger two-dimensional photonic band gaps[J]. Physical Review Letters, 1996, 77(14): 2949-2952.

    [14] [14] WANG B, CAPPELLI M A. A tunable microwave plasma photonic crystal filter[J]. Applied Physics Letters, 2015, 107(17): 171107.

    [15] [15] YIN Y, XU H, YU M Y, et al. Bandgap characteristics of one-dimensional plasma photonic crystal[J]. Physics of Plasmas, 2009, 16(10): 102103.

    [16] [16] SHUKLA S, PRASAD S, SINGH V. Properties of surface modes in one dimensional plasma photonic crystals[J]. Physics of Plasmas, 2015, 22(2): 022122.

    [20] [20] SAKAI O, TACHIBANA K. Plasmas as metamaterials: a review[J]. Plasma Sources Science and Technology, 2012, 21(1): 013001.

    [21] [21] SAKAI O, SAKAGUCHI T, TACHIBANA K. Verification of a plasma photonic crystal for microwaves of millimeter wavelength range using two-dimensional array of columnar microplasmas[J]. Applied Physics Letters, 2005, 87(24): 241505.

    [22] [22] WANG B, CAPPELLI M A. A plasma photonic crystal bandgap device[J]. Applied Physics Letters, 2016, 108(16): 161101.

    [23] [23] WANG B, RODRGUEZ J A, CAPPELLI M A. 3D woodpile structure tunable plasma photonic crystal[J]. Plasma Sources Science and Technology, 2019, 28(2): 02LT01.

    [24] [24] WANG B, RODRGUEZ J A, MILLER O, et al. Reconfigurable plasma-dielectric hybrid photonic crystal as a platform for electromagnetic wave manipulation and computing[J]. Physics of Plasmas, 2021, 28(4): 043502.

    [25] [25] MATLIS E H, CORKE T C, NEISWANDER B, et al. Electromagnetic wave transmittance control using self-organized plasma lattice metamaterial[J]. Journal of Applied Physics, 2018, 124(9): 093104.

    [26] [26] TAN H Y, JIN C G, ZHUGE L J, et al. Air-like plasma frequency in one-dimensional plasma photonic crystals[J]. Physics of Plasmas, 2019, 26(5): 052107.

    [27] [27] ZHANG L, OUYANG J T. Experiment and simulation on one-dimensional plasma photonic crystals[J]. Physics of Plasmas, 2014, 21(10): 103514.

    [28] [28] ZHANG W D, WANG H T, ZHAO X L, et al. Bandgap-tunable device realized by ternary plasma photonic crystals arrays[J]. Physics of Plasmas, 2020, 27(6): 063508.

    [29] [29] YAO J F, YUAN C X, LI H, et al. 1D photonic crystal filled with low-temperature plasma for controlling broadband microwave transmission[J]. AIP Advances, 2019, 9(6): 065302.

    [30] [30] WANG R G, LI B, ZHANG T K, et al. The influence of defects in a plasma photonic crystal on the characteristics of microwave transmittance[J]. Plasma Science and Technology, 2020, 22(8): 41-48.

    [31] [31] WU Z C, DONG M F, FAN W L, et al. Microwave transmittance characteristics in different uniquely designed one-dimensional plasma photonic crystals[J]. Plasma Science and Technology, 2021, 23(6): 117-124.

    Tools

    Get Citation

    Copy Citation Text

    WU Zhenyu, JIA Mengmeng, HOU Xiaohan, LIU Fucheng, FAN Weili. Band Gap Characteristics of h-BN Superlattice Plasma Photonic Crystals[J]. Journal of Synthetic Crystals, 2023, 52(2): 252

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Oct. 14, 2022

    Accepted: --

    Published Online: Mar. 18, 2023

    The Author Email: Zhenyu WU (1120072308@qq.com)

    DOI:

    CSTR:32186.14.

    Topics