Acta Laser Biology Sinica, Volume. 28, Issue 4, 296(2019)
Preparation of Gold Nanoclusters by Template Method and Applications in Biomolecule Biosensing
[1] [1] CLARK L C J, LYONS C. Electrode systems for continuous monitoring in cardiovascular surgery[J]. Annals of the New York Academy of Sciences, 1962, 102(1): 29-45.
[2] [2] ZHENG J, NICOVICH P R, DICKSON R M. Highly fluorescent noble-metal quantum dots[J]. Annual Review of Physical Chemistry, 2007, 58(1): 409-431.
[3] [3] XU H, SUSLICK K S. Water-soluble fluorescent silver nanoclusters[J]. Advanced Materials, 2010, 22(10): 1078-1082.
[4] [4] OU G Z, ZHAO J, CHEN P, et al. Fabrication and application of noble metal nanoclusters as optical sensors for toxic metal ions[J]. Analytical and Bioanalytical Chemistry, 2018, 410(10): 2485-2498.
[5] [5] NASARUDDIN R R, CHEN T K, YAN N, et al. Roles of thiolate ligands in the synthesis, properties and catalytic application of gold nanoclusters[J]. Coordination Chemistry Reviews, 2018, 368(1): 60-79.
[6] [6] WANG Xumei. The synthesis, characterization and applications of fluorescence nanomaterial[D].Changchun:Jilin University, 2012.
[7] [7] ZHENG Y K, LAI L M, LIU W W, et al. Recent advances in biomedical applications of fluorescent gold nanoclusters[J]. Advances in Colloid and Interface Science, 2017, 242: 1-16.
[8] [8] DANIELS M J, WANG Y M, LEE M Y, et al. Abnormal cytokinesis in cells deficient in the breast cancer susceptibility protein BRCA2[J]. Science, 2004, 306(5697): 876-879.
[9] [9] BISELLI M, CONTI F, GRAMENZI A, et al. A new approach to the use of alpha-fetoprotein as surveillance test for hepatocellular carcinoma in patients with cirrhosis[J]. British Journal of Cancer, 2015, 112(1): 69-76.
[10] [10] CHANG H Y, TSENG Y T, YUAN Z Q. The effect of ligand-ligand interactions on the formation of photoluminescent gold nanoclustersembedded in Au(I)-thiolate supramalecules[J]. Physical Chemistry Chemical Physics, 2017, 19(19): 12085-12093.
[11] [11] ZHANG X D, LUO Z T, CHEN J, et al. Ultrasmall glutathione-protected gold nanoclusters as next generation radiotherapy sensitizers with high tumor uptake and high renal clearance[J]. Scientific Reports, 2015, 5: 1-7.
[12] [12] SHANG L, AZADFAR N, STOCKMAR F, et al. One-pot synthesis of near-infrared fluorescent gold clusters for cellular fluorescence lifetime imaging[J]. Small, 2011, 7(18): 2614-2620.
[13] [13] SUN J, YUE Y, WANG P, et al. Facile and rapid synthesis of water-soluble fluorescent gold nanoclusters for sensitive and selective detection of Ag+[J]. Journal of Materials Chemistry C, 2013, 1(5): 908-913.
[14] [14] DENG H H, WANG F F, SHI X Q, et al. Water-soluble gold nanoclusters prepared by protein-ligand interaction as fluorescent probe for real-time assay of pyrophosphatase activity[J]. Biosensors & Bioelectronics, 2016, 83: 1-8.
[15] [15] ZHENG J, PETTY J T, DICKSON R M. High quantum yield blue emission from water-soluble Au8 nanodots[J]. Journal of the American Chemical Society, 2003, 125(26): 7780-7781.
[16] [16] LIU C P, WU T H, LIU C Y, et al. Interactions of nitroxide redicals with dendrimer-entrapped Au-8-clusters:a fluorescent nanosensorfor intracellular imaging of ascorbic acid[J]. Journal of Materials Chemistry B, 2015, 3(2): 191-197.
[17] [17] XIE J P, ZHENG Y G, YING J Y. Protein-directed synthesis of highly fluorescent gold nanoclusters[J]. Journal of the American Chemical Society, 2009, 131(3): 888-889.
[18] [18] XU Y L, SHERWOOD J, QIN Y, et al. The role of protein characteristics in the formation and fluorescence of Au nanoclusters[J]. Nanoscale, 2014, 6(3): 1515-1524.
[19] [19] YARRAMALA D S, BAKSI A, PRADEEP T, et al. Green synthesis of protein-protected fluorescent gold nanoclusters (AuNCs):reducing the size of AuNCs by partially occupying the Ca2+ site by La3+ in Apo-alpha-Lactalbumin[J]. ACS Sustainable Chemisrty&Engineering, 2017, 5(7): 6064-6069.
[20] [20] SHEN R, LIU P P, ZHANG Y Q, et al. Sensitive detection of single-cell secreted H2O2 by integrating a microfluidic droplet sensor and Au nanoclusters[J]. Analytical Chemistry, 2018, 90(7): 4478-4484.
[21] [21] KENNEDY T A C, MACLEAN J L, LIU J W. Blue emitting gold nanoclusters templated by poly-cytosine DNA at low pH and poly-adenine DNA at neutral pH[J]. Chemical Communications, 2012, 48(54): 6845-6847.
[22] [22] LIU G Y, SHAO Y, WU F, et al. DNA-hosted fluorescent gold nanoclusters:sequence-dependent formation[J]. Nanotechnology, 2013, 24(1): 1-7.
[23] [23] YU Y, LUO Z T, YU Y, et al. Observation of cluster size growth in CO-directed synthesis of Au25(SR)18 nanoclusters[J]. ACS Nano, 2012, 6(9): 7920-7927.
[24] [24] HAN J, ZHUO Y, CHAI Y Q, et al. A signal amplification strategy using the cascade catalysis of gold nanoclusters and glucose dehydrogenase for ultrasensitive detection of thrombin[J]. Biosensors & Bioelectronics, 2013, 50: 161-166.
[25] [25] HU L Z, HAN S, PARVEEN S, et al. Highly sensitive fluorescent detection of trypsin based on BSA-stabilized gold nanoclusters[J]. Biosensors & Bioelectronics, 2012, 32(1): 297-299.
[26] [26] DIAZ S A, HASTMAN D A, MEDINTZ I L, et al. Understanding energy transfer with luminescent gold nanoclusters:a promising new transduction modality for biorelated applications[J]. Journal of Materials Chemistry B, 2017, 5(39): 7907-7926.
[27] [27] SHIANG Y C, HUANG C C, CHEN W Y, et al. Fluorescent gold and silver nanoclusters for the analysis of biopolymers and cell imaging[J]. Journal of Materials Chemsitry, 2012, 22(26): 12972-12982.
[28] [28] BIAN R X, WU X T, CHAI F, et al. Facile preparation of fluorescent Au nanoclusters-based test papers for recyclable detection of Hg2+ and Pb2+[J]. Sensors and Actuators B-Chemical, 2017, 241: 592-600.
[29] [29] CUI M L, ZHAO Y, SONG Q J. Synthesis, optical properties and applications of ultra-small luminescent gold nanoclusters[J]. Trac-Trends in Analytical Chemistry, 2014, 57: 73-82.
[30] [30] ZHENG J, ZHANG C W, DICKSON R M. Highly fluorescent, water-soluble, size-turnable gold quantum dots[J]. Physical Review Letter, 2004, 93(7): 1-4.
[31] [31] LUO Z T, YUAN X, YU Y, et al. From aggregation-induced emission of Au(I)-thiolate complexes to ultrabright Au(0)@ Au(I)-thiolate core-shell nanoclusters[J]. Journal of the American Chemistry Society, 2012, 134(40): 16662-16670.
[32] [32] VERICAT C, VELA M E, BENITEZ G, et al. Self-assembled monolayers of thiols and dithiols on gold:new challenges for a well-known system[J]. Chemical Society Reviews, 2010, 39(35): 1805-1834.
[33] [33] LI L L, LIU H Y, SHEN Y Y, et al. Electrogenerated chemiluminescence of Au nanoclusters for the detection of dopamine[J]. 2011, 83(3): 661-665.
[34] [34] TRIULZI R C, MICIC M, GIORDANI S, et al. Immunoassay based on the antibody-conjugated PAMAM-dendrimer-gold quantum dot complex[J]. Chemical Communications, 2006, 48(48): 5068-5070.
[35] [35] ZHAO Q, HUANG H W, ZHANG L Y, et al. Strategy to fabricate naked-eye readout ultrasensitive plasmonic nanosensor based on enzyme mimetic gold nanoclusters[J]. Analytical Chemistry, 2016, 88(2): 1412-1418.
[36] [36] QIN L, HE X W, CHEN L X, et al. Turn-on fluorescent sensing of glutathione S-transferase at near-infrared region based on FRET between gold nanoclusters and gold nanorods[J]. ACS Applied Materials & Interfaces, 2015, 7(10): 5965-5971.
[37] [37] LIU Q, LI N, WANG M K, et al. A label-free fluorescent biosensor for the detection of protein kinase activity based on gold nanoclusters/graphene oxide hybrid materials[J]. Analytica Chimica Acta, 2018, 1013: 71-78.
[38] [38] DRAG M, SALVESEN G S. Emerging principles in protease-based drug discovery[J]. Nature Reviews Drug Discovery, 2010, 9(9): 690-701.
[39] [39] FRIEDL P, WOLF K. Tube travel:the role of proteases in individual and collective a cancer cell invasion[J]. Cancer Research, 2008, 68(18): 7247-7249.
[40] [40] WANG Y C, WANG Y, ZHOU F B, et al. Protein-protected Au clusters as a new class of nanoscale biosensor for label-free fluorescence detection of proteases[J]. Small, 2012, 8(24): 3769-3773.
[41] [41] SUN J, YANG X R. Gold nanoclusters-Cu2+ ensemble-based fluorescence turn-on and real-time assay for acetycholinesterase activity and inhibitor screening[J]. Biosensors & Bioelectronics, 2015, 74: 177-182.
[42] [42] RUTTEN C J, VELTHUIS A G J. Invited review:sensors to support health management on dairy farms[J]. Journal of Dairy Science, 2013, 96(4): 1928-1952.
[43] [43] SONG Y J, WANG Y C, QIN L D. A multistage volumetric bar chart chip for vissualized quantification of DNA[J]. Journal of the American Chemical Society, 2013, 135(45): 16785-16788.
[44] [44] WEST A L, GRIEP M H, COLE D P, et al. DNase 1 retains endodeoxyribonuclease activity following gold nanocluster synthesis[J]. Analytical Chemistry, 2014, 86(15): 7377-7382.
[45] [45] WANG W, BAO T, ZENG X, et al. Ultrasensitive electrochemical DNA biosensor based on functionalized gold clustes/graphene nanohybrids coupling with exonuclease III-aided cascade target recycling[J]. Biosensors & Bioelectronics, 2017, 91: 183-189.
[46] [46] XU S H, NIE Y Y, JIANG L P, et al. Polydopamine nanosphere/gold nanocluster (Au NC)-based nanoplatform for dual color simultaneous detection of multiple tumor-related mircroRNAs with DNase-I-assisted target recycling amplification[J]. Analytical Chemistry, 2018, 90(6): 4039-4045.
[47] [47] HOSSEINI M, AHMADI E, BORGHEI Y S, et al. A new fluorescence turn-on nanobiosensor for the detection of micro-RNA-21 based on a DNA-gold nanocluster[J]. Methods and Applications in Fluorescence, 2017, 5(1): 1-8.
[48] [48] ZHANG A, NEUMEYER J L, BALDESSARINI R J. Recent progress in development of dopamine receptor subtype-selective agents: potential therapeutics for neurological and psychiatric disorders[J]. Chemical Reviews, 2007, 107(1): 274-302.
[49] [49] DAWSON T M, DAWSON V L. Molecular pathways of neurodegeneration in Parkinson’s disease[J]. Science, 2003, 302(5646): 819-822.
[50] [50] TAO Y, LIN Y H, REN J S, et al. A dual fluorometric and colorimetric sensor for dopamine based on BSA-stabilized Au nanoclusters[J]. Biosensors & Bioelectronics, 2013, 42: 41-46.
[51] [51] YANG D Q, LUO M C, DI J W, et al. Gold nanocluster-based ratiometric fluorescent probes for hydrogen peroxide and enzymatic sensing of uric acid[J]. Microchimica Acta, 2018, 185(6): 1-7.
[52] [52] MENG F F, YIN H Q, LI Y, et al. One-step synthesis of enzyme-stabilized gold nanoclusters for fluorescent ratiometric detection of hydrogen peroxide, glucose and uric acid[J]. Microchemical Journal, 2018, 141: 431-437.
Get Citation
Copy Citation Text
WEI Wei, ZHAO Qian, SHI Xingbo. Preparation of Gold Nanoclusters by Template Method and Applications in Biomolecule Biosensing[J]. Acta Laser Biology Sinica, 2019, 28(4): 296
Category:
Received: May. 12, 2019
Accepted: --
Published Online: Sep. 27, 2019
The Author Email: