Optics and Precision Engineering, Volume. 31, Issue 12, 1816(2023)

Railway few-shot intruding objects detection method with metric meta learning

Baoqing GUO1,2、* and Defen ZHANG1
Author Affiliations
  • 1School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 00044, China
  • 2Frontiers Science Center for Smart High-speed Railway System, Beijing Jiaotong University, Beijing 100044, China
  • show less
    Figures & Tables(16)
    Overall network framework
    Structure of feature extraction network
    Structure of residual block
    Improved channel attention module
    Network pre-training strategy
    Thermal map effect of railway datasets
    Sample distribution with and without model pre-training and center related loss
    • Table 1. Railway dataset composition

      View table
      View in Article

      Table 1. Railway dataset composition

      编号场景类别数量/张
      1空场景40
      2行人入侵40
      3泥石流入侵40
      4落石入侵40
      5列车经过40
    • Table 1. [in Chinese]

      View table
      View in Article

      Table 1. [in Chinese]

      算法 1:类中心微调(Pseudo Code of center fine tuning)

      输入:支持集S={(f(x1),y1),,(f(xN),yN)},其中yi1,...,kDk表示支持集S中所有标签为yi=k的样本集合

      输出:更新得到的每个中心值{c1,...,ck}

      1.初始化每个类中心值:

      for k in {1,...,k} do

        ck(φ)1NxiSkfϕk(xi)

         end for

      2.归一化支持集中样本xi到每个初始类中心的距离:

        for i in 1,...,N do

         p(φ)(y=k|xi)e-d(fφ(xi),ck(φ))k'e-d(fφ(xi),ck'(φ))

        end for

      3.计算损失并更新类中心:

          L(φ)-1Ni=1Nlog(p(φ)(y=k|xi))

    • Table 2. [in Chinese]

      View table
      View in Article

      Table 2. [in Chinese]

      算法2:特征映射网络学习算法

      (Feature mapping network parameter learning algorithm)

      输入:支持集S={(f(x1),y1),,(f(xN),yN)},其中yi1,,k,查询集Q={(f(x1),y1),,(f(xm),ym)},特征映射网络初始化参数θC,超参数λα,迭代次数t0

      输出:特征映射网络参数θC

      1:while not converge do:

      2:  tt+1

      3:计算总的损失:

      Ltotal=Ls+Lc=-1mi=1mlog(e-d(fϕ(xi),ck)k'e-d(fϕ(x),ck'))+λi=1mxi-ck2

      4:  初始化类别中心:

         for i in k:

      ck=1Sk(xi,yi)Skf(xi)

         end for

      5:  计算反向传播误差:Lxi=Lsxi+λLcxi

      6:  更新参数θCθC=θC-αimLxixiθC

      7:end while

    • Table 2. Experiment results on MiniImageNet dataset(%)

      View table
      View in Article

      Table 2. Experiment results on MiniImageNet dataset(%)

      5-way Acc
      Model1-shot5-shot
      MAM1748.7063.11

      RelationNet9

      ProtoNet8

      MatchNet18

      本文算法

      50.44

      48.51±0.40

      43.40±0.78

      50.65±0.45

      65.32

      67.09±0.36

      51.09±0.71

      74.40±0.33

    • Table 3. Experiment results on railway datasets

      View table
      View in Article

      Table 3. Experiment results on railway datasets

      5-way Acc
      Model1-shot5-shot
      MAML60.23±0.2175.26±0.24

      RelationNet

      ProtoNet

      MatchNet

      本文算法

      61.95±0.32

      62.40±0.36

      58.45±0.23

      65.91±0.35

      76.68±0.40

      81.83±0.24

      65.23±0.35

      85.44±0.25

    • Table 4. mAp on different kinds of object

      View table
      View in Article

      Table 4. mAp on different kinds of object

      目标类别准确率
      背景、泥石流、列车95.53±0.18
      背景、泥石流、列车、落石91.48±0.21
      背景、泥石流、列车、落石、行人85.44±0.25
    • Table 5. Experiments on different attention mechanism(%)

      View table
      View in Article

      Table 5. Experiments on different attention mechanism(%)

      网络结构5-way 1-shot5-way 5-shot
      基本网络59.01±0.4177.53±0.25
      基本网络+CBAM58.12±0.2675.85±0.23
      基本网络+改进CAM62.76±0.4178.39±0.24
    • Table 6. Ablation experiments on railway datasets

      View table
      View in Article

      Table 6. Ablation experiments on railway datasets

      基本网络改进CAM类中心微调中心相关损失模型预训练5-way 1-shot5-way 5-shot
      59.01±0.4177.53±0.25
      62.76±0.4178.39±0.24
      -80.58±0.24
      64.90±0.3979.44±0.22
      64.16±0.4084.23+0.23
      65.91±0.3585.44±0.25
    • Table 7. Model accuracy under different K-shot

      View table
      View in Article

      Table 7. Model accuracy under different K-shot

      N-way K-shotAccuracy
      5-way 5-shot85.44±0.25
      5-way 10-shot88.16±0.22
      5-way15-shot91.21±0.21
      5-way 20-shot93.51±0.21
    Tools

    Get Citation

    Copy Citation Text

    Baoqing GUO, Defen ZHANG. Railway few-shot intruding objects detection method with metric meta learning[J]. Optics and Precision Engineering, 2023, 31(12): 1816

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Information Sciences

    Received: Jun. 14, 2022

    Accepted: --

    Published Online: Jul. 25, 2023

    The Author Email: Baoqing GUO (bqguo@bjtu.edu.cn)

    DOI:10.37188/OPE.20233112.1816

    Topics