Optical Technique, Volume. 50, Issue 6, 745(2024)
Dynamic snake convolution and graph convolution attention for skeletal fluorosis X-ray image segmentation
[3] [3] Ronneberger O, Fischer P, Brox T. U-Net: Convolutional networks for biomedical image segmentation[C]∥Proceedings of Medical Image Computing and Computer-Assisted Intervention. Cham, Switzerland: Springer,2015:234—241.
[4] [4] Jha D, Smedsrud P H, Riegler M A, et al. ResUNet++: An advanced architecture for medical image segmentation[C]∥Proceedings of IEEE International Symposium on Multimedia. Piscataway, NJ: IEEE,2019:225—2255.
[5] [5] Huang Huimin, Lin Lanfen, Tong Ruofeng, et al. UNet 3+: a full-scale connected UNet for medical image segmentation[C]∥Proceedings of International Conference on Acoustics, Speech and Signal Procession. Piscataway,NJ:IEEE,2020:1055—1059.
[8] [8] Valanarasu J M J, Patel V M. UNext: MLP-based rapid medical image segmentation network[C]∥Proceedings of Medical Image Computing and Computer Assisted Intervention. Cham, Switzerland: Springer,2022:23—33.
[9] [9] Ruan Jiacheng, Xie Mingye, Gao Jingsheng, et al. EGE-UNet: an efficient group enhanced UNet for skin lesion segmentation[C]∥Proceedings of Medical Image Computing and Computer-Assisted Intervention. Cham,Switzerland:Springer,2023:481—490.
[11] [11] Liu Shaochong, Li Xiang, Jiang Yuchen, et al. Integrated learning approach based on fused segmentation information for skeletal fluorosis diagnosis and severity grading[J]. IEEE Transactions on Industrial Informatics,2021,17(11):7554—7563.
[12] [12] Quan Jianing, Ge Baozhen, Wang Min. CrackViT: a unified CNN-transformer model for pixel-level crack extraction[J]. Neural Computing and Applications,2023,35(2023):10957—10973.
[13] [13] Han Kai, Wang Yunhe, Tian Qi, et al. Ghostnet: More features from cheap operations[C]∥Proceedings of Computer Vision and Pattern Recognition. Piscataway,NJ:IEEE,2020:1580—1589.
[14] [14] Chen Yinpeng, Dai Xiyang, Liu Mengchen, et al. Dynamic convolution: attention over convolution kernels[C]∥Proceedings of Computer Vision and Pattern Recognition. Piscataway,NJ:IEEE,2020:11030—11039.
[15] [15] Yang Brandon, Bender G, Le Q V, et al. Condconv: Conditionally parameterized convolutions for efficient inference[J]. Advances in Neural Information Processing Systems,2019,32.
[16] [16] Zhou J, Jampani V, Pi Z, et al. Decoupled dynamic filter networks [C]∥Proceedings of Computer Vision and Pattern Recognition. Piscataway,NJ:IEEE,2021:6647—6656.
[17] [17] Qi Yaolei, He Yuting, Qi Xiaoming, et al. Dynamic snake convolution based on topological geometric constraints for tubular structure segmentation[C]∥Proceedings of International Conference on Computer Vision. Piscataway,NJ:IEEE,2023:6070—6079.
[18] [18] Zhang Si, Tong Hanghang, Xu Jiejun, et al. Graph convolutional networks: a comprehensive review[J]. Computational Social Networks,2019,6(1):1—23.
[19] [19] Han Kai, Wang Yunhe, Guo Jianyuan, et al. Vision GNN: An image is worth graph of nodes[J]. Advances in Neural Information Processing Systems,2022,35:8291—8303.
[20] [20] Hao Jinkui, Liu Jiang, Pereira E, et al. Uncertainty-guided graph attention network for parapneumonic effusion diagnosis[J]. Medical Image Analysis,2022,75:102217.
[21] [21] Lu Yuhang, Li Weijian, Zheng Kang, et al. Learning to segment anatomical structures accurately from one exemplar[C]∥Proceedings of Medical Image Computing and Computer Assisted Intervention: the 23rd International Conference.Lima,Peru:Springer,2020:678—688.
[22] [22] Rahman M M, Marculescu R. G-CASCADE: Efficient cascaded graph convolutional decoding for 2D medical image segmentation [C]∥Proceedings of Winter Conference on Applications of Computer Vision. Piscataway,NJ:IEEE,2024:7728—7737.
[23] [23] Li Kunhong, Wang Longguang, Liu Li, et al. Decoupling makes weakly supervised local feature better[C]∥Proceedings of Computer Vision and Pattern Recognition. Piscataway,NJ:IEEE,2022:15838—15848.
[25] [25] Lou Ange, Guan Shuyue, Loew M. DC-UNet: rethinking the U-Net architecture with dual channel efficient CNN for medical image segmentation[C]∥Proceedings of Medical Imaging 2021: Image Processing. Bellingham,WA:SPIE,2021,11596:758—768.
[26] [26] Xu Qing, Ma Zhicheng, He Na, et al. DCSAU-Net: A deeper and more compact split-attention U-Net for medical image segmentation[J]. Computers in Biology and Medicine,2023,154:106626.
Get Citation
Copy Citation Text
LEI Huang, YUN Wu. Dynamic snake convolution and graph convolution attention for skeletal fluorosis X-ray image segmentation[J]. Optical Technique, 2024, 50(6): 745