Optical Technique, Volume. 50, Issue 6, 745(2024)

Dynamic snake convolution and graph convolution attention for skeletal fluorosis X-ray image segmentation

LEI Huang1 and YUN Wu1,2、*
Author Affiliations
  • 1State Key Laboratory of Public Big Data, Guiyang 550025, China
  • 2College of Computer Science and Technology, Guiyang 550025, China
  • show less
    References(20)

    [3] [3] Ronneberger O, Fischer P, Brox T. U-Net: Convolutional networks for biomedical image segmentation[C]∥Proceedings of Medical Image Computing and Computer-Assisted Intervention. Cham, Switzerland: Springer,2015:234—241.

    [4] [4] Jha D, Smedsrud P H, Riegler M A, et al. ResUNet++: An advanced architecture for medical image segmentation[C]∥Proceedings of IEEE International Symposium on Multimedia. Piscataway, NJ: IEEE,2019:225—2255.

    [5] [5] Huang Huimin, Lin Lanfen, Tong Ruofeng, et al. UNet 3+: a full-scale connected UNet for medical image segmentation[C]∥Proceedings of International Conference on Acoustics, Speech and Signal Procession. Piscataway,NJ:IEEE,2020:1055—1059.

    [8] [8] Valanarasu J M J, Patel V M. UNext: MLP-based rapid medical image segmentation network[C]∥Proceedings of Medical Image Computing and Computer Assisted Intervention. Cham, Switzerland: Springer,2022:23—33.

    [9] [9] Ruan Jiacheng, Xie Mingye, Gao Jingsheng, et al. EGE-UNet: an efficient group enhanced UNet for skin lesion segmentation[C]∥Proceedings of Medical Image Computing and Computer-Assisted Intervention. Cham,Switzerland:Springer,2023:481—490.

    [11] [11] Liu Shaochong, Li Xiang, Jiang Yuchen, et al. Integrated learning approach based on fused segmentation information for skeletal fluorosis diagnosis and severity grading[J]. IEEE Transactions on Industrial Informatics,2021,17(11):7554—7563.

    [12] [12] Quan Jianing, Ge Baozhen, Wang Min. CrackViT: a unified CNN-transformer model for pixel-level crack extraction[J]. Neural Computing and Applications,2023,35(2023):10957—10973.

    [13] [13] Han Kai, Wang Yunhe, Tian Qi, et al. Ghostnet: More features from cheap operations[C]∥Proceedings of Computer Vision and Pattern Recognition. Piscataway,NJ:IEEE,2020:1580—1589.

    [14] [14] Chen Yinpeng, Dai Xiyang, Liu Mengchen, et al. Dynamic convolution: attention over convolution kernels[C]∥Proceedings of Computer Vision and Pattern Recognition. Piscataway,NJ:IEEE,2020:11030—11039.

    [15] [15] Yang Brandon, Bender G, Le Q V, et al. Condconv: Conditionally parameterized convolutions for efficient inference[J]. Advances in Neural Information Processing Systems,2019,32.

    [16] [16] Zhou J, Jampani V, Pi Z, et al. Decoupled dynamic filter networks [C]∥Proceedings of Computer Vision and Pattern Recognition. Piscataway,NJ:IEEE,2021:6647—6656.

    [17] [17] Qi Yaolei, He Yuting, Qi Xiaoming, et al. Dynamic snake convolution based on topological geometric constraints for tubular structure segmentation[C]∥Proceedings of International Conference on Computer Vision. Piscataway,NJ:IEEE,2023:6070—6079.

    [18] [18] Zhang Si, Tong Hanghang, Xu Jiejun, et al. Graph convolutional networks: a comprehensive review[J]. Computational Social Networks,2019,6(1):1—23.

    [19] [19] Han Kai, Wang Yunhe, Guo Jianyuan, et al. Vision GNN: An image is worth graph of nodes[J]. Advances in Neural Information Processing Systems,2022,35:8291—8303.

    [20] [20] Hao Jinkui, Liu Jiang, Pereira E, et al. Uncertainty-guided graph attention network for parapneumonic effusion diagnosis[J]. Medical Image Analysis,2022,75:102217.

    [21] [21] Lu Yuhang, Li Weijian, Zheng Kang, et al. Learning to segment anatomical structures accurately from one exemplar[C]∥Proceedings of Medical Image Computing and Computer Assisted Intervention: the 23rd International Conference.Lima,Peru:Springer,2020:678—688.

    [22] [22] Rahman M M, Marculescu R. G-CASCADE: Efficient cascaded graph convolutional decoding for 2D medical image segmentation [C]∥Proceedings of Winter Conference on Applications of Computer Vision. Piscataway,NJ:IEEE,2024:7728—7737.

    [23] [23] Li Kunhong, Wang Longguang, Liu Li, et al. Decoupling makes weakly supervised local feature better[C]∥Proceedings of Computer Vision and Pattern Recognition. Piscataway,NJ:IEEE,2022:15838—15848.

    [25] [25] Lou Ange, Guan Shuyue, Loew M. DC-UNet: rethinking the U-Net architecture with dual channel efficient CNN for medical image segmentation[C]∥Proceedings of Medical Imaging 2021: Image Processing. Bellingham,WA:SPIE,2021,11596:758—768.

    [26] [26] Xu Qing, Ma Zhicheng, He Na, et al. DCSAU-Net: A deeper and more compact split-attention U-Net for medical image segmentation[J]. Computers in Biology and Medicine,2023,154:106626.

    Tools

    Get Citation

    Copy Citation Text

    LEI Huang, YUN Wu. Dynamic snake convolution and graph convolution attention for skeletal fluorosis X-ray image segmentation[J]. Optical Technique, 2024, 50(6): 745

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Apr. 10, 2024

    Accepted: Jan. 21, 2025

    Published Online: Jan. 21, 2025

    The Author Email: Wu YUN (wuyun_v@126.com)

    DOI:

    Topics