Laser & Infrared, Volume. 54, Issue 7, 1007(2024)

Advances in the preparation of metal and compound quantum dots by liquid phase ultrasonic method

ZHANG Tai-wei1,2,3, HU Kun1,2,3, LI Guo-bin1,2,3, XIA Yi-ping1,2,3, YANG Ao1,2,3, LI Xue-ming1, TANG Li-bin2,3、*, and YANG Pei-zhi1
Author Affiliations
  • 1School of Energy and Environmental Sciences, Key Laboratory of Advanced Technique & Preparation for Renewable Energy Materials, Ministry of Education, Yunnan Normal University, Kunming 650500, China
  • 2Kunming Institute of Physics, Kunming 650223, China
  • 3Yunnan Key Laboratory of Advanced Photoelectric Materials & Devices, Kunming 650223, China
  • show less
    References(40)

    [1] [1] Hu Long, Zhao Qian, Huang Shujuan, et al. Flexible and efficient perovskite quantum dot solar cells via hybrid interfacial architecture[J]. Nature Communications, 2021, 12(1): 466-466.

    [2] [2] Li Yang, Hou Xiaoqi, Dai Xingliang, et al. Stoichiometry-controlled InP-based quantum dots: synthesis, photoluminescence, and electroluminescence[J]. Journal of the American Chemical Society, 2019, 141(16): 6448-6452.

    [3] [3] Chakraborty Chitraleema, Kinnischtzke Laura, Goodfellow Kenneth M, et al. Voltage-controlled quantum light from an atomically thin semiconductor[J]. Nature Nanotechnology, 2015, 10(6): 507-511.

    [4] [4] Zheng Xinting, Ananthanarayanan Arundithi, Luo Kathy Qian, et al. Glowing graphene quantum dots and carbon dots: properties, syntheses, and biological applications[J]. Small, 2015, 11(14): 1620-1636.

    [5] [5] Kofi Oti Boakye-Yiadom, Samuel Kesse, Yaw Opoku-Damoah, et al. Carbon dots: applications in bioimaging and theranostics[J]. International Journal of Pharmaceutics, 2019, 564: 308-317.

    [6] [6] Pooja Devi, Shefali Saini, Ki-Hyun Kim, et al. The advanced role of carbon quantum dots in nanomedical applications[J]. Biosensors and Bioelectronics, 2019, 141: 111158.

    [7] [7] Xu Zhenglong, Lin Shenhuang, Onofrio N, et al. Exceptional catalytic effects of black phosphorus quantum dots in shuttling-free lithium sulfur batteries[J]. Nature Communications, 2018, 9(1): 4164.

    [8] [8] Chu Ke, Li Xingchuan, Li Qingqing, et al. Synergistic enhancement of electrocatalytic nitrogen reduction over boron nitride quantum dots decorated Nb2CTx-MXene[J]. Small, 2021, 17(40): e2102363.

    [9] [9] Xiongjian Huang, Qianyi Guo, Dandan Yang, et al. Reversible 3D laser printing of perovskite quantum dots inside a transparent medium[J]. Nature Photonics, 2020, 14(2): 82-88.

    [10] [10] Cao Mengyan, Zhao Xiujian, Gong Xiao, et al. Ionic Liquid-assisted fast synthesis of carbon dots with strong fluorescence and their tunable multicolor emission[J]. Small, 2022, 18(11): e2106683.

    [11] [11] Yuan Fanglong, Wang Zhibin, Li Xiaohong, et al. Bright multicolor bandgap fluorescent carbon quantum dots for electroluminescent light-emitting diodes[J]. Advanced Materials (Deerfield Beach, Fla.), 2017, 29(3): 1604436.

    [12] [12] Yanhua Xu, Zhiteng Wang, Zhinan Guo, et al. Solvothermal synthesis and ultrafast photonics of black phosphorus quantum dots[J]. Advanced Optical Materials, 2016, 4(8): 1223-1229.

    [13] [13] Dai Xingliang, Deng Yunzhou, Peng Xiaogang, et al. Quantum-dot light-emitting diodes for large-area displays: towards the dawn of commercialization[J]. Advanced materials, 2017, 29(14): 1607022.

    [14] [14] Price Christopher C, Frey Nathan C, Jariwala Deep, et al. Engineering zero-dimensional quantum confinement in transition-metal dichalcogenide heterostructures[J]. ACS nano, 2019, 13(7): 8303-8311.

    [15] [15] Han Shikui, Yang Xuyong, Zhu Yihan, et al. Synthesis of WOn-WX2(n=2.7, 2.9; X=S, Se) heterostructures for highly efficient green quantum dot light-emitting diodes[J]. Angewandte Chemie, 2017, 56(35): 10486-10490.

    [16] [16] Li Feng, Wang Huide, Huang Ruijia, et al. Recent advances in SnSe nanostructures beyond thermoelectricity[J]. Advanced Functional Materials, 2022, 32(26).

    [17] [17] Quan Xu, Wenjing Yang, Yangyang Wen, et al. Hydrochromic full-color MXene quantum dots through hydrogen bonding toward ultrahigh-efficiency white light-emitting diodes[J]. Applied Materials Today, 2019, 16: 90-101.

    [18] [18] Jiguo Geng, Chuantao Ma, Dong Zhang, et al. Facile and fast synthesis of SnO2 quantum dots for high performance solid-state asymmetric supercapacitor[J]. Journal of Alloys and Compounds, 2020, 825: 153850-153850.

    [19] [19] Sohal Neeraj, Maity Banibrata, Basu Soumen, et al. Transformation of bulk MnO2 to fluorescent quantum dots for selective and sensitive detection of ferric ions and ascorbic acid by turn-off-on strategy[J]. Journal of Photochemistry & Photobiology, A: Chemistry, 2023, 434.

    [20] [20] Liu Yingnan, Xiao Yaqing, Yu Min, et al. Antimonene quantum dots as an emerging fluorescent nanoprobe for the pH-mediated dual-channel detection of tetracyclines[J]. Small, 2020, 16(42): e2003429.

    [21] [21] Xing Chenyang, Huang Weichun, Xie Zhongjian, et al. Ultrasmall bismuth quantum dots: facile liquid-phase exfoliation, characterization, and application in high-performance UV-Vis photodetector[J]. ACS Photonics, 2017, 5(2): 621-629.

    [22] [22] Dong Li, Huang Weichun, Chu Hongwei, et al. Passively Q-switched near-infrared lasers with bismuthene quantum dots as the saturable absorber[J]. Optics & Laser Technology, 2020, 128.

    [23] [23] Pengpeng Ren, Wenfei Zhang, Yiqun Ni, et al. Realization of lasing emission from one step fabricated WSe2 quantum dots[J]. Nanomaterials, 2018, 8(7): 538.

    [24] [24] Ilanchezhiyan P, Mohan Kumar G, Xiao F, et al. Ultrasonic-assisted synthesis of ZnTe nanostructures and their structural, electrochemical and photoelectrical properties[J]. Ultrason Sonochem, 2017, 39: 414-419.

    [25] [25] Huang Weichun, Jiang Xiantao, Wang Yunzheng, et al. Two-dimensional beta-lead oxide quantum dots[J]. Nanoscale, 2018, 10(44): 20540-20547.

    [26] [26] Qiao Junpeng, Ahmed Safayet, Kwong Cheng Ping, et al. Tin telluride quantum dots as a new saturable absorber for a mode-locked Yb+ doped fiber laser[J]. Optics and Laser Technology, 2021, 142.

    [27] [27] Ahmed S, Qiao J, Cheng P K, et al. Tin telluride quantum dots as a novel saturable absorber for Q-switching and mode locking in fiber lasers[J]. Advanced Optical Materials, 2020, 9(6).

    [28] [28] Dai Wenhao, Dong Haifeng, Zhang Xueji. A semimetal-like molybdenum carbide quantum dots photoacoustic imaging and photothermal agent with high photothermal conversion efficiency[J]. Materials, 2018, 11(9).

    [29] [29] Zhang Qiuxia, Sun Yan, Liu Meiling, et al. Selective detection of Fe3+ ions based on fluorescence MXene quantum dots via a mechanism integrating electron transfer and inner filter effect[J]. Nanoscale, 2020, 12(3): 1826-1832.

    [30] [30] Pan Han, Huang Weichun, Chu Hongwei, et al. Bismuthene quantum dots based optical modulator for MIR lasers at 2 m[J]. Optical Materials, 2020, 102.

    [31] [31] Zhang Shan, Li Jing, Wang Erkang. Ultrafine transition metal dichalcogenide nanodots prepared by polyvinylpyrrolidone-assisted liquid phase exfoliation[J]. J Mater Chem B, 2017, 5(14): 2609-2615.

    [32] [32] Zhang Xiao, Lai Zhuangchai, Liu Zhengdong, et al. A facile and universal top-down method for preparation of monodisperse transition-metal dichalcogenide nanodots[J]. Angew Chem Int Ed Engl, 2015, 54(18): 5425-5428.

    [33] [33] Pataniya P M, Soni B M, Solanki G K, et al. Photodetector based on liquid phase exfoliated SnSe quantum dots[J]. Optical Materials, 2022, 125.

    [34] [34] Ma Zhangyan, Sun Yan, Xie Jingwen, et al. Facile preparation of MnO2 quantum dots with enhanced fluorescence via microenvironment engineering with the assistance of some reductive biomolecules[J]. ACS Appl Mater Interfaces, 2020, 12(13): 15919-15927.

    [35] [35] Ma Zhangyan, Xu Yifan, Li Peipei, et al. Self-catalyzed surface reaction-induced fluorescence resonance energy transfer on cysteine-stabilized MnO2 quantum dots for selective detection of dopamine[J]. Anal Chem, 2021, 93(7): 3586-3593.

    [36] [36] Huang Lei, Niu Yusheng, Xu Gengfang, et al. Generation of vanadium oxide quantum dots with distinct fluorescence and antibacterial activity via a room-temperature agitation strategy[J]. Chemnanomat, 2018, 4(10): 1048-1053.

    [37] [37] Peng H J, Li Zhenying, Tsay S Y, et al. Wavelength tunable Q-switched Er-doped fiber laser based on ZrSe2[J]. Optics and Laser Technology, 2022, 147.

    [38] [38] Cheng Yuting, Su Chenyou, Lin H Y, et al. Excess random laser action in memories for hybrid optical/electric logic[J]. Acs Applied Electronic Materials, 2020, 2(4): 954-961.

    [39] [39] Zheng Jiajia, Dong Yanhua, Pan Xiangping, et al. Ultra-wideband and flat-gain optical properties of the PbS quantum dots-doped silica fiber[J]. Optics Express, 2019, 27(26): 37900-37909.

    [40] [40] Huber Daniel, Reindl Marcus, Huo Yongheng, et al. Highly indistinguishable and strongly entangled photons from symmetric GaAs quantum dots[J]. Nature Communications, 2017, 8(1): 1550.

    Tools

    Get Citation

    Copy Citation Text

    ZHANG Tai-wei, HU Kun, LI Guo-bin, XIA Yi-ping, YANG Ao, LI Xue-ming, TANG Li-bin, YANG Pei-zhi. Advances in the preparation of metal and compound quantum dots by liquid phase ultrasonic method[J]. Laser & Infrared, 2024, 54(7): 1007

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Nov. 6, 2023

    Accepted: Apr. 30, 2025

    Published Online: Apr. 30, 2025

    The Author Email: TANG Li-bin (scitang@163.com)

    DOI:10.3969/j.issn.1001-5078.2024.07.001

    Topics