Infrared and Laser Engineering, Volume. 51, Issue 6, 20220325(2022)
Wavelength switchable and tunable single-frequency narrow linewidth ytterbium doped fiber laser (Invited)
[1] Buikema A, Jose F, Augst S J, et al. Narrow-linewidth fiber amplifier for gravitational-wave detectors[J]. Optics Letters, 44, 3833-3836(2019).
[2] Rapol U D, Krishna A, Wasan A, et al. Laser cooling and trapping of Yb from a thermal source[J]. European Physical Journal D, 29, 409-414(2004).
[3] Li S H, Wang Q, Song R, et al. Laser diode pumped high-energy single-frequency Er: YAG laser with hundreds of nanoseconds pulse duration[J]. Chinese Optics Letters, 18, 40-44(2020).
[4] Williams J G, Turyshev S G, Boggs D H. Progress in lunar laser ranging tests of relativistic gravity[J]. Physical Review Letters, 93, 261101(2004).
[5] Shi Wei, Fu Shijie, Fang Qiang, . Single-frequency fiber laser based on rare-earth-doped silica fiber[J]. Infrared and Laser Engineering, 45, 1003001(2016).
[6] Hou Y, Zhang Q, Qi S, et al. 1.5 μm polarization-maintaining dual-wavelength single-frequency distributed Bragg reflection fiber laser with 28 GHz stable frequency difference[J]. Optics Letters, 43, 1383-1386(2018).
[7] Loh W H, Samson B N, Dong L, et al. High performance single frequency fiber grating-based erbium/ytterbium-codoped fiber lasers[J]. Journal of Lightwave Technology, 16, 114-118(1998).
[8] Mo S, Huang X, Xu S, et al. 600-Hz linewidth short-linear-cavity fiber laser[J]. Optics Letters, 39, 5818-5821(2014).
[9] Yuan L M, Lu B L, Kang J, et al. Narrow-linewidth single-frequency yitterbium-doped fiber laser at 1 083 nm[J]. Acta Photonica Sinica, 45, 0814003(2016).
[10] Wang L, Cao Y, Wan M, et al. Tunable single-frequency fiber laser based on the spectral narrowing effect in a nonlinear semiconductor optical amplifier[J]. Optics Express, 24, 29705-29713(2016).
[11] Paschotta R, Nilsson J, Reekie L, et al. Single-frequency ytterbium-doped fiber laser stabilized by spatial hole burning[J]. Optics Letters, 22, 40-42(1997).
[12] Yin F, Yang S, Chen H, et al. 60-nm-wide tunable single-longitudinal-mode ytterbium fiber laser with passive multiple-ring cavity[J]. IEEE Photonics Technology Letters, 23, 1658-1660(2011).
[13] Li Y, He Y, Cai Y, et al. Black phosphorus: broadband nonlinear optical absorption and application[J]. Laser Physics Letters, 15, 025301(2018).
[14] Zhang J, Sheng Q, Zhang L, et al. 2.56 W single-frequency all-fiber oscillator at 1720 nm[J]. Advanced Photonic Research, 3, 02100256(2022).
[15] Ahmad H, Muhammad F D, Chang H P, et al. Dual-wavelength fiber lasers for the optical generation of microwave and terahertz radiation[J]. IEEE Journal of Selected Topics in Quantum Electronics, 20, 166-173(2014).
[16] Kim R K, Chu S, Han Y G. Stable and widely tunable single-longitudinal-mode dual-wavelength erbium-doped fiber laser for optical beat frequency generation[J]. IEEE Photonics Technology Letters, 24, 521-523(2012).
[17] Yin B, Feng S, Liu Z, et al. Tunable and switchable dual-wavelength single polarization narrow linewidth SLM erbium-doped fiber laser based on a PM-CMFBG filter[J]. Optics Express, 22, 22528-22533(2014).
[18] Zhu T, Zhang B, Shi L, et al. Tunable dual-wavelength fiber laser with ultra-narrow linewidth based on Rayleigh backscattering[J]. Optics Express, 24, 1324-1330(2016).
[19] Feng T, Wang M, Wang X, et al. Switchable 0.612 nm-spaced dual-wavelength fiber laser with sub-khz linewidth, ultra-high osnr, ultra-low rin and orthogonal polarization outputs[J]. Journal of Lightwave Technology, 37, 3173-3182(2019).
[20] Lemieux J F, Bellemare A. Step-tunable (100 GHz) hybrid laser based on Vernier effect between Fabry-Perot cavity and sampled fibre Bragg grating[J]. Electronics Letters, 35, 904-906(1999).
[21] Kang Z, Jin U K. C-band wavelength-swept single-longitudinal-mode erbium-doped fiber ring laser[J]. Optics Express, 16, 14173-14179(2008).
Get Citation
Copy Citation Text
Xiangrui Meng, Han Wen, Haowei Chen, Bo Sun, Baole Lu, Jintao Bai. Wavelength switchable and tunable single-frequency narrow linewidth ytterbium doped fiber laser (Invited)[J]. Infrared and Laser Engineering, 2022, 51(6): 20220325
Category: Special issu
Received: May. 11, 2022
Accepted: --
Published Online: Dec. 20, 2022
The Author Email: