Matter and Radiation at Extremes, Volume. 7, Issue 6, 064403(2022)
High-energy-density plasma in femtosecond-laser-irradiated nanowire-array targets for nuclear reactions
[1] V. E.Fortov. High Energy Densities in Planets and Stars. Extreme States of Matter: High Energy Density Physics, 505-590(2016).
[2] J.Barnes, D.Kasen, B.Metzger, E.Quataert, E.Ramirez-Ruiz. Origin of the heavy elements in binary neutron-star mergers from a gravitational-wave event. Nature, 551, 80-84(2017).
[3] J. P.Freidberg. Plasma Physics and Fusion Energy(2008).
[4] C.Brown, T. E.Cowan, W.Fountain, S. P.Hatchett, M. H.Key, M.Rothet?al.. Fast ignition by intense laser-accelerated proton beams. Phys. Rev. Lett., 86, 436-439(2001).
[5] R.Betti, O. A.Hurricane. Inertial-confinement fusion with lasers. Nat. Phys., 12, 435-448(2016).
[6] K. S.Anderson, T. R.Boehly, R. S.Craxton, V. N.Goncharov, D. R.Harding, J. P.Knaueret?al.. Direct-drive inertial confinement fusion: A review. Phys. Plasmas, 22, 110501(2015).
[7] D. A.Callahan, D. T.Casey, P. M.Celliers, C.Cerjan, E. L.Dewald, O. A.Hurricaneet?al.. Fuel gain exceeding unity in an inertially confined fusion implosion. Nature, 506, 343-348(2014).
[8] C.Baccou, S.Depierreux, C.Goyon, C.Labaune, G.Loisel, J.Rafelski, V.Yahia. Fusion reactions initiated by laser-accelerated particle beams in a laser-produced plasma. Nat. Commun., 4, 2506(2013).
[9] C. R.Brune, D. T.Casey, D. B.Sayre, V. A.Smalyuk, R. E.Tipton, C. R.Weberet?al.. Thermonuclear reactions probed at stellar-core conditions with laser-based inertial-confinement fusion. Nat. Phys., 13, 1227-1231(2017).
[10] I.Hofmann. Review of accelerator driven heavy ion nuclear fusion. Matter Radiat. Extremes, 3, 1-11(2018).
[11] F. M.Arioli, L.Fedeli, A.Formenti, M.Passoni, A.Pazzaglia, A.Tentori. Enhanced laser-driven hadron sources with nanostructured double-layer targets. New J. Phys., 22, 033045(2020).
[12] W.Bang, M.Barbui, A.Bonasera, G.Dyer, K.Hagel, H. J.Quevedoet?al.. Temperature measurements of fusion plasmas produced by Petawatt-Laser-Irradiated D23He or CD43He clustering gases. Phys. Rev. Lett., 111, 055002(2013).
[13] W.Bang, M.Barbui, A.Bonasera, K.Hagel, J. B.Natowitz, K.Schmidtet?al.. Measurement of the plasma astrophysical
[14] A.Bonasera, M.Donovan, G.Dyer, E.Gaul, H. J.Quevedo, G.Zhanget?al.. Range of plasma ions in cold cluster gases near the critical point. Phys. Lett. A, 381, 1682-1686(2017).
[15] A.Bonasera, M.Huang, Y. G.Ma, B. F.Shen, H. W.Wang, G.Zhanget?al.. Nuclear probes of an out-of-equilibrium plasma at the highest compression. Phys. Lett. A, 383, 2285-2289(2019).
[16] S.Fujioka, H.Nishimura, D.Salzmann, H.Takabe, F.Wang, N.Yamamotoet?al.. X-ray astronomy in the laboratory with a miniature compact object produced by laser-driven implosion. Nat. Phys., 5, 821-825(2009).
[17] G.Grim, E. P.Hartouni, A. J.Kemp, S. C.Wilks. Generating keV ion distributions for nuclear reactions at near solid-density using intense short-pulse lasers. Nat. Commun., 10, 4156(2019).
[18] M. K.Matzen. Z pinches as intense x-ray sources for high-energy density physics applications. Phys. Plasmas, 4, 1519-1527(1997).
[19] R. P.Drake. Introduction to high-energy-density physics. High-Energy-Density Physics: Foundation of Inertial Fusion and Experimental Astrophysics, 1-20(2018).
[20] A.Bonasera, M.Huang, H. J.Quevedo, G.Zhang. Nuclear astrophysics with lasers. Nucl. Phys. News, 29, 9-13(2019).
[21] Y.Geng, Z.Gong, C.Jeon, S. G.Lee, Y.Shou, P.Wanget?al.. Super-heavy ions acceleration driven by ultrashort laser pulses at ultrahigh intensity. Phys. Rev. X, 11, 021049(2021).
[22] C.Arda, S.H?fer, D.Kartashov, D.Khaghani, O. N.Rosmej, Z.Samsonovaet?al.. Generation of keV hot near-solid density plasma states at high contrast laser-matter interaction. Phys. Plasmas, 25, 083103(2018).
[23] J. H.Bin, D.Kiefer, C.Kreuzer, W. J.Ma, M. J.Streeter, H. Y.Wanget?al.. Ion acceleration using relativistic pulse shaping in near-critical-density plasmas. Phys. Rev. Lett., 115, 064801(2015).
[24] I. W.Choi, L.Cialfi, D.Dellasega, L.Fedeli, I.Prencipe, A.Sgattoniet?al.. Development of foam-based layered targets for laser-driven ion beam production. Plasma Phys. Controlled Fusion, 58, 034019(2016).
[25] J. H.Bin, Z.Gong, C.Kreuzer, H. Y.Wang, M.Yeung, M. L.Zhouet?al.. Enhanced laser-driven ion acceleration by superponderomotive electrons generated from near-critical-density plasma. Phys. Rev. Lett., 120, 074801(2018).
[26] I.W.Choi, I. J.Kim, H. W.Lee, W. J.Ma, P. K.Singh, J. Q.Yuet?al.. Laser acceleration of highly energetic carbon ions using a double-layer target composed of slightly underdense plasma and ultrathin foil. Phys. Rev. Lett., 122, 014803(2019).
[27] C.Bargsten, M. G.Capeluto, R.Hollinger, V.Kaymak, A.Pukhov, V. N.Shlyaptsevet?al.. Efficient picosecond x-ray pulse generation from plasmas in the radiation dominated regime. Optica, 4, 1344(2017).
[28] C.Bargsten, M. G.Capeluto, R.Hollinger, V.Kaymak, A.Pukhov, S.Wanget?al.. Energy penetration into arrays of aligned nanowires irradiated with relativistic intensities: Scaling to terabar pressures. Sci. Adv., 3, e1601558(2017).
[29] K. U.Akli, R. R.Freeman, L. L.Ji, A.Pukhov, J.Snyder. Towards manipulating relativistic laser pulses with micro-tube plasma lenses. Sci. Rep., 6, 23256(2016).
[30] F.Baffigi, G.Cristoforetti, G.D’Arrigo, A. D.Lad, P.Londrillo, P. K.Singhet?al.. Transition from Coherent to Stochastic electron heating in ultrashort relativistic laser interaction with structured targets. Sci. Rep., 7, 1479(2017).
[31] H.-r.Huang, H.-y.Lan, W.-y.Liu, S.-d.Wu, Y.-c.Wu, L.-q.Zhanget?al.. Brilliant attosecond γ-ray emission and high-yield positron production from intense laser-irradiated nano-micro array. Phys. Plasmas, 28, 023110(2021).
[32] P. Y.Chang, J.Frenje, O. V.Gotchev, J. P.Knauer, D. D.Meyerhofer, O.Polomarovet?al.. Laser-driven magnetic-flux compression in high-energy-density plasmas. Phys. Rev. Lett., 103, 215004(2009).
[33] K.Jiang, A.Pukhov, C. T.Zhou. TJ cm−3 high energy density plasma formation from intense laser-irradiated foam targets composed of disordered carbon nanowires. Plasma Phys. Controlled Fusion, 63, 015014(2020).
[34] Z.Gong, G.Mourou, Y. R.Shou, Y. H.Tang, X. Z.Wu, J. Q.Yuet?al.. Efficiency enhancement of ion acceleration from thin target irradiated by multi-PW few-cycle laser pulses. Phys. Plasmas, 28, 023102(2021).
[35] M. S.Blümcke, E.Eftekhari-Zadeh, R.Loetzsch, Z.Samsonova, I.Uschmann, M.Zapfet?al.. Laser energy absorption and x-ray generation in nanowire arrays irradiated by relativistically intense ultra-high contrast femtosecond laser pulses. Phys. Plasmas, 29, 013301(2022).
[36] L. H.Cao, Y.Chao, Y.Jiang, Z. J.Liu, R.Xie, C. Y.Zhenget?al.. Improvement of laser absorption and control of particle acceleration by subwavelength nanowire target. Phys. Plasmas, 27, 123108(2020).
[37] K. U.Akli, R. R.Freeman, S.Jiang, A. G.Krygier, D. W.Schumacher. Effects of front-surface target structures on properties of relativistic laser-plasma electrons. Phys. Rev. E, 89, 013106(2014).
[38] V.Kaymak, A.Pukhov, J. J.Rocca, V. N.Shlyaptsev. Nanoscale ultradense Z-pinch formation from laser-irradiated nanowire arrays. Phys. Rev. Lett., 117, 035004(2016).
[39] L.Cao, Y.Guet?al.. Enhanced absorption of intense short-pulse laser light by subwavelength nanolayered target. Phys. Plasmas, 17, 043103(2010).
[40] T. E.Cowan, S. P.Hatchett, M. H.Key, T. W.Phillips, M.Roth, R. A.Snavelyet?al.. Intense high-energy proton beams from petawatt-laser irradiation of solids. Phys. Rev. Lett., 85, 2945-2948(2000).
[41] C.Brabetz, O.Deppert, P.Fiala, A.Kleinschmidt, P.Poth, F.Wagneret?al.. Maximum proton energy above 85 MeV from the relativistic interaction of laser pulses with micrometer thick CH2 targets. Phys. Rev. Lett., 116, 205002(2016).
[42] B.Li, L.Shan, J.Wang, B.Zhang, Z.Zhang, Z.Zhaoet?al.. Transport of fast electrons in a nanowire array with collisional effects included. Phys. Plasmas, 22, 123118(2015).
[43] B.Borm, L.Burr, F.G?rtner, L.Gremillet, D.Khaghani, M.Lobetet?al.. Enhancing laser-driven proton acceleration by using micro-pillar arrays at high drive energy. Sci. Rep., 7, 11366(2017).
[44] P.Campbell, M.Dozières, P.Forestier-Colleoni, K.Krushelnick, A.Maksimchuk, G. M.Petrovet?al.. Optimization of laser-nanowire target interaction to increase the proton acceleration efficiency. Plasma Phys. Controlled Fusion, 61, 065016(2019).
[45] C.Bargsten, R.Hollinger, A.Prieto, A.Pukhov, M. A.Purvis, V. N.Shlyaptsevet?al.. Relativistic plasma nanophotonics for ultrahigh energy density physics. Nat. Photonics, 7, 796-800(2013).
[46] D.Rolles. Highly efficient nanoscale X-ray sources. Nat. Photonics, 12, 59-60(2018).
[47] L.-M.Chen, P.Gibbon, Y.-T.Li, Z.-M.Sheng, W.-M.Wang, J.Zhang. Collimated ultrabright gamma rays from electron wiggling along a petawatt laser-irradiated wire in the QED regime. Proc. Natl. Acad. Sci. U. S. A., 115, 9911-9916(2018).
[48] Z.Cao, D.Kong, Z.Mei, Z.Pan, Y.Shou, P.Wanget?al.. High-efficiency water-window x-ray generation from nanowire array targets irradiated with femtosecond laser pulses. Opt. Express, 29, 5427-5436(2021).
[49] C.Calvi, A.Curtis, R.Hollinger, V.Kaymak, A.Pukhov, J.Tinsleyet?al.. Micro-scale fusion in dense relativistic nanowire array plasmas. Nat. Commun., 9, 1077(2018).
[50] C.Calvi, A.Curtis, R.Hollinger, S.Huanyu, S.Wang, Y.Wanget?al.. Ion acceleration and D-D fusion neutron generation in relativistically transparent deuterated nanowire arrays. Phys. Rev. Res., 3, 043181(2021).
[51] E. T.Alger, D. A.Callahan, S. H.Glenzer, G.Grim, J. L.Kline, A. J.MacKinnonet?al.. Cryogenic thermonuclear fuel implosions on the national ignition facility. Phys. Plasmas, 19, 056318(2012).
[52] M. G.Capeluto, R.Hollinger, A.Moreau, H.Song, S.Wang, Y.Wanget?al.. Extreme ionization of heavy atoms in solid-density plasmas by relativistic second-harmonic laser pulses. Nat. Photonics, 14, 607-611(2020).
[53] T. D.Arber, K.Bennett, C. S.Brady, A.Lawrence-Douglas, M. G.Ramsay, N. J.Sircombeet?al.. Contemporary particle-in-cell approach to laser-plasma modelling. Plasma Phys. Controlled Fusion, 57, 113001(2015).
[54] A. V.Arefiev, Z.Gong, A. P. L.Robinson, X. Q.Yan. Highly collimated electron acceleration by longitudinal laser fields in a hollow-core target. Plasma Phys. Controlled Fusion, 61, 035012(2019).
[55] Y.-X.Geng, L.Qing, Y.-R.Shou, M.-J.Wu, X.-H.Xu, J.-G.Zhuet?al.. Generating proton beams exceeding 10 MeV using high contrast 60 TW laser. Chin. Phys. Lett., 35, 092901(2018).
[56] J.Meyer-Ter-Vehn, R.Ramis, R.Schmalz. MULTI— a computer code for one-dimensional multigroup radiation hydrodynamics. Comput. Phys. Commun., 49, 475-505(1988).
[57] G.-R.Han, X.Wang. Fabrication and characterization of anodic aluminum oxide template. Microelectron. Eng., 66, 166-170(2003).
[58] G.Cantono, Z.Chen, A.Permogorov, M.Salvadori, K.Svendsen, S.Vallièreset?al.. Enhanced laser-driven proton acceleration using nanowire targets. Sci. Rep., 11, 2226(2021).
[59] A.Beck, M.Chiaramello, J.Derouillat, A.Grassi, F.Pérez, T.Vinciet?al.. SMILEI: A collaborative, open-source, multi-purpose particle-in-cell code for plasma simulation. Comput. Phys. Commun., 222, 351-373(2018).
[60] D. P.Higginson, A.Link, A.Schmidt. A pairwise nuclear fusion algorithm for weighted particle-in-cell plasma simulations. J. Comput. Phys., 388, 439-453(2019).
[61] A.Bonasera, P.Burian, Z.Cao, C.Fu, D.Kong, P.Rubovi?et?al.. Measurements of D–D fusion neutrons generated in nanowire array laser plasma using Timepix3 detector. Nucl. Instrum. Methods Phys. Res., Sect. A, 985, 164680(2021).
[62] S.Glasstone, R. H.Lovberg. Controlled Thermonuclear Reactions: An Introduction to Theory and Experiment(1960).
Get Citation
Copy Citation Text
Defeng Kong, Guoqiang Zhang, Yinren Shou, Shirui Xu, Zhusong Mei, Zhengxuan Cao, Zhuo Pan, Pengjie Wang, Guijun Qi, Yao Lou, Zhiguo Ma, Haoyang Lan, Wenzhao Wang, Yunhui Li, Peter Rubovic, Martin Veselsky, Aldo Bonasera, Jiarui Zhao, Yixing Geng, Yanying Zhao, Changbo Fu, Wen Luo, Yugang Ma, Xueqing Yan, Wenjun Ma. High-energy-density plasma in femtosecond-laser-irradiated nanowire-array targets for nuclear reactions[J]. Matter and Radiation at Extremes, 2022, 7(6): 064403
Category: Fundamental Physics At Extreme Light
Received: Aug. 15, 2022
Accepted: Oct. 11, 2022
Published Online: Dec. 15, 2022
The Author Email: