Semiconductor Optoelectronics, Volume. 46, Issue 1, 172(2025)

Object Detection in the Blind Spot of Truck Based on Improved YOLOv8n

DAI Shaosheng1, ZHOU Man1, YU Zian2, LIN Yuenan1, and YU Xinyao1
Author Affiliations
  • 1School of Communications and Information Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, CHN
  • 2Kunming Yunnei Power Co., Ltd., Kunming 650200, CHN
  • show less
    References(17)

    [2] [2] Kim W, Yang H, Kim J. Blind Spot Detection Radar System Design for Safe Driving of Smart Vehicles[J]. Applied Sciences, 2023, 13(10): 6147-6169.

    [4] [4] Zhao Y, Bai L, Lyu Y, et al. Camera-Based Blind Spot Detection with a General Purpose Lightweight Neural Network[J]. Electronics, 2019, 8(2): 233.

    [5] [5] Worrakantapon A, Pongsena W, Kerdprasop K, et al. Real-Time Human Detection in a Restricted Area for Safety in Truck Dumper Control System Using Deep Learning[J]. 2021, 10(1): 29-35.

    [7] [7] Bochkovskiy A, Wang C Y, Liao H Y M. Yolov4: Optimal speed and accuracy of object detection[J]. arXiv preprint arXiv: 2004.10934, 2020.

    [8] [8] Li C, Li L, Jiang H, et al. YOLOv6: A single-stage object detection framework for industrial applications[J]. arXiv preprint arXiv: 2209.02976, 2022.

    [9] [9] Wang C Y, Bochkovskiy A, Liao H Y M. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2023: 7464-7475.

    [10] [10] Wan D, Lu R, Shen S, et al. Mixed local channel attention for object detection[J]. Engineering Applications of Artificial Intelligence, 2023, 123: 106442.

    [11] [11] Kang M, Ting C M, Ting F F, et al. ASF-YOLO: A novel YOLO model with attentional scale sequence fusion for cell instance segmentation[J]. Image and Vision Computing, 2024, 147: 105057.

    [12] [12] Zhang H, Xu C, Zhang S. Inner-IoU: more effective intersection over union loss with auxiliary bounding box[J]. arXiv preprint arXiv: 2311.02877, 2023.

    [13] [13] Hu J, Shen L, Sun G. Squeeze-and-excitation networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018: 7132-7141.

    [14] [14] Wang Q, Wu B, Zhu P, et al. ECA-Net: Efficient channel attention for deep convolutional neural networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2020: 11534-11542.

    [15] [15] Tran D, Bourdev L, Fergus R, et al. Learning Spatiotemporal Features with 3D Convolutional Networks[C]//2015 IEEE International Conference on Computer Vision (ICCV), 2015: 4489-4497.

    [16] [16] Xu B, Wang N, Chen T, et al. Empirical evaluation of rectified activations in convolutional network[J]. arXiv preprint arXiv: 1505.00853, 2015.

    [17] [17] Lin T Y, Dollr P, Girshick R, et al. Feature pyramid networks for object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017: 2117-2125.

    [18] [18] Rezatofighi H, Tsoi N, Gwak J, et al. Generalized Intersection Over Union: A Metric and a Loss for Bounding Box Regression[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2019: 658-666.

    [19] [19] Zheng Z, Wang P, Ren D, et al. Enhancing geometric factors in model learning and inference for object detection and instance segmentation[J]. IEEE Transactions on Cybernetics, 2021, 52(8): 8574-8586.

    [20] [20] Gevorgyan Z. SIoU loss: More powerful learning for bounding box regression[J]. arXiv preprint arXiv: 2205.12740, 2022.

    Tools

    Get Citation

    Copy Citation Text

    DAI Shaosheng, ZHOU Man, YU Zian, LIN Yuenan, YU Xinyao. Object Detection in the Blind Spot of Truck Based on Improved YOLOv8n[J]. Semiconductor Optoelectronics, 2025, 46(1): 172

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Sep. 30, 2024

    Accepted: Sep. 18, 2025

    Published Online: Sep. 18, 2025

    The Author Email:

    DOI:10.16818/j.issn1001-5868.20240930001

    Topics