Semiconductor Optoelectronics, Volume. 46, Issue 1, 172(2025)
Object Detection in the Blind Spot of Truck Based on Improved YOLOv8n
[2] [2] Kim W, Yang H, Kim J. Blind Spot Detection Radar System Design for Safe Driving of Smart Vehicles[J]. Applied Sciences, 2023, 13(10): 6147-6169.
[4] [4] Zhao Y, Bai L, Lyu Y, et al. Camera-Based Blind Spot Detection with a General Purpose Lightweight Neural Network[J]. Electronics, 2019, 8(2): 233.
[5] [5] Worrakantapon A, Pongsena W, Kerdprasop K, et al. Real-Time Human Detection in a Restricted Area for Safety in Truck Dumper Control System Using Deep Learning[J]. 2021, 10(1): 29-35.
[7] [7] Bochkovskiy A, Wang C Y, Liao H Y M. Yolov4: Optimal speed and accuracy of object detection[J]. arXiv preprint arXiv: 2004.10934, 2020.
[8] [8] Li C, Li L, Jiang H, et al. YOLOv6: A single-stage object detection framework for industrial applications[J]. arXiv preprint arXiv: 2209.02976, 2022.
[9] [9] Wang C Y, Bochkovskiy A, Liao H Y M. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2023: 7464-7475.
[10] [10] Wan D, Lu R, Shen S, et al. Mixed local channel attention for object detection[J]. Engineering Applications of Artificial Intelligence, 2023, 123: 106442.
[11] [11] Kang M, Ting C M, Ting F F, et al. ASF-YOLO: A novel YOLO model with attentional scale sequence fusion for cell instance segmentation[J]. Image and Vision Computing, 2024, 147: 105057.
[12] [12] Zhang H, Xu C, Zhang S. Inner-IoU: more effective intersection over union loss with auxiliary bounding box[J]. arXiv preprint arXiv: 2311.02877, 2023.
[13] [13] Hu J, Shen L, Sun G. Squeeze-and-excitation networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018: 7132-7141.
[14] [14] Wang Q, Wu B, Zhu P, et al. ECA-Net: Efficient channel attention for deep convolutional neural networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2020: 11534-11542.
[15] [15] Tran D, Bourdev L, Fergus R, et al. Learning Spatiotemporal Features with 3D Convolutional Networks[C]//2015 IEEE International Conference on Computer Vision (ICCV), 2015: 4489-4497.
[16] [16] Xu B, Wang N, Chen T, et al. Empirical evaluation of rectified activations in convolutional network[J]. arXiv preprint arXiv: 1505.00853, 2015.
[17] [17] Lin T Y, Dollr P, Girshick R, et al. Feature pyramid networks for object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017: 2117-2125.
[18] [18] Rezatofighi H, Tsoi N, Gwak J, et al. Generalized Intersection Over Union: A Metric and a Loss for Bounding Box Regression[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2019: 658-666.
[19] [19] Zheng Z, Wang P, Ren D, et al. Enhancing geometric factors in model learning and inference for object detection and instance segmentation[J]. IEEE Transactions on Cybernetics, 2021, 52(8): 8574-8586.
[20] [20] Gevorgyan Z. SIoU loss: More powerful learning for bounding box regression[J]. arXiv preprint arXiv: 2205.12740, 2022.
Get Citation
Copy Citation Text
DAI Shaosheng, ZHOU Man, YU Zian, LIN Yuenan, YU Xinyao. Object Detection in the Blind Spot of Truck Based on Improved YOLOv8n[J]. Semiconductor Optoelectronics, 2025, 46(1): 172
Category:
Received: Sep. 30, 2024
Accepted: Sep. 18, 2025
Published Online: Sep. 18, 2025
The Author Email: