Chinese Journal of Lasers, Volume. 51, Issue 19, 1901007(2024)
Research Progress on High-Power Narrow-Linewidth Linearly Polarized Yb-Doped Fiber Lasers and Their Main Applications (Invited)
[4] Lin A X, Xiao Q R, Ni L et al. Domestic YDF active fiber realizes single fiber 20 kW laser output[J]. Chinese Journal of Lasers, 48, 0916003(2021).
[7] Agrawal Govind[M]. 非线性光纤光学(2007).
Agrawal G[M]. Nonlinear fiber optics(2007).
[24] Meng D R, Ma P F, Wang X L et al. Kilowatt-level, high brightness, narrow-linewidth PM fiber amplifiers based on laser gain competition[J]. Proceedings of SPIE, 11023, 110233B(2019).
[31] Chu Q H, Guo C, Shu Q et al. 21.7GHz linewidth polarization maintaining fiber laser achieves 3.22 kW near diffraction limit output[J]. Chinese Journal of Lasers, 48, 1716001(2021).
[34] Chu Q H, Shu Q, Guo C et al. Polarization-maintaining fiber laser realizes 3 kW output with 10.6 GHz linewidth[J]. High Power Laser and Particle Beams, 33, 123006(2021).
[38] Wang Y S, Peng W J, Wang J et al. 10 GHz narrow line wide line polarized near-single-mode all-fiber laser achieves 5 kW power output[J]. Chinese Journal of Lasers, 50, 2416002(2023).
[39] Liu H, Feng Y J, Yang X B et al. 3.2-kW 9.7-GHz polarization-maintaining narrow-linewidth all-fiber amplifier[J]. Current Optics and Photonics, 8, 65-71(2024).
[42] Wang Y S, Chang Z, Sun Y H et al. 47 GHz narrow linewidth linear polarized fiber amplifier injected by a simple fiber oscillator laser seed source[J]. Proceedings of SPIE, 10811, 108110B(2018).
[43] Chu Q H, Zhao P F, Lin H H et al. kW-level 1030 nm polarization-maintained fiber laser with narrow linewidth and near-diffraction-limited beam quality[J]. Applied Optics, 57, 2992-2996(2018).
[46] Liao S B, Luo T, Xiao R H et al. 4.6 kW linearly polarized and narrow-linewidth monolithic fiber amplifier based on a fiber oscillator laser seed[J]. Optics Letters, 48, 6533-6536(2023).
[54] Harish A V, Nilsson J. Optimization of phase modulation with arbitrary waveform generators for optical spectral control and suppression of stimulated Brillouin scattering[J]. Optics Express, 23, 6988-6999(2015).
[56] Huang L, Ma P F, Tao R M et al. 1.5 kW ytterbium-doped single-transverse-mode, linearly polarized monolithic fiber master oscillator power amplifier[J]. Applied Optics, 54, 2880-2884(2015).
[59] Kobyakov A, Sauer M, Chowdhury D. Stimulated Brillouin scattering in optical fibers[J]. Advances in Optics and Photonics, 2, 1-59(2009).
[60] Lü H B, Zhou P, Wang X L et al. Dynamics of stimulated Brillouin scattering in optical fibers without external feedback induced by frequency detuning from resonance[J]. Optics Express, 23, 18117-18132(2015).
[61] Liu A P. Novel SBS suppression scheme for high-power fiber amplifiers[J]. Proceedings of SPIE, 6102, 61021R(2006).
[62] Harish A V, Nilsson J. Optimized modulation formats for suppression of stimulated Brillouin scattering in optical fiber amplifiers[C], 25-29(2017).
[64] Ran Y, Su R T, Ma P F et al. 293 W, GHz narrow-linewidth, polarization maintaining nanosecond fiber amplifier with SBS suppression employing simultaneous phase and intensity modulation[J]. Optics Express, 23, 25896-25905(2015).
[66] Al-Alimi A W, Abu Bakar M H, Abas A F et al. Stable multiwavelength thulium fiber laser assisted by four wave mixing effect[J]. Optics & Laser Technology, 106, 191-196(2018).
[68] Schreiber T, Liem A, Freier E et al. Analysis of stimulated Raman scattering in cw kW fiber oscillators[J]. Proceedings of SPIE, 8961, 89611T(2014).
[71] Huang Z H, Liang X B, Li C Y et al. Spectral broadening in high-power Yb-doped fiber lasers employing narrow-linewidth multilongitudinal-mode oscillators[J]. Applied Optics, 55, 297-302(2016).
[72] Huang Y S, Xiao Q R, Li D et al. 3 kW narrow linewidth high spectral density continuous wave fiber laser based on fiber Bragg grating[J]. Optics & Laser Technology, 133, 106538(2021).
[75] Zenteno L, Wang J, Walton D et al. Suppression of Raman gain in single-transverse-mode dual-hole-assisted fiber[J]. Optics Express, 13, 8921-8926(2005).
[76] Kim J, Dupriez P, Codemard C et al. Suppression of stimulated Raman scattering in a high power Yb-doped fiber amplifier using a W-type core with fundamental mode cut-off[J]. Optics Express, 14, 5103-5113(2006).
[77] Jansen F, Nodop D, Jauregui C et al. Modeling the inhibition of stimulated Raman scattering in passive and active fibers by lumped spectral filters in high power fiber laser systems[J]. Optics Express, 17, 16255-16265(2009).
[78] Nodop D, Jauregui C, Jansen F et al. Inhibition of stimulated Raman scattering using long period gratings in double clad fiber amplifiers[C], AMB8-16(2011).
[79] Wang Z F, Wang M, Liu L et al. Suppression of stimulated Raman scattering in a monolithic fiber laser oscillator using chirped and tilted fiber Bragg gratings[J]. Proceedings of SPIE, 10811, 108110V(2018).
[80] Smith A V, Smith J J. Increasing mode instability thresholds of fiber amplifiers by gain saturation[J]. Optics Express, 21, 15168-15182(2013).
[81] Jauregui C, Otto H J, Stutzki F et al. Passive mitigation strategies for mode instabilities in high-power fiber laser systems[J]. Optics Express, 21, 19375-19386(2013).
[84] Tao R M, Wang X L, Zhou P et al. Seed power dependence of mode instabilities in high-power fiber amplifiers[J]. Journal of Optics, 19, 065202(2017).
[85] Tao R M, Ma P F, Wang X L et al. Mitigating of modal instabilities in linearly-polarized fiber amplifiers by shifting pump wavelength[J]. Journal of Optics, 17, 045504(2015).
[87] Beier F, Hupel C, Nold J et al. Narrow linewidth, single mode 3 kW average power from a directly diode pumped ytterbium-doped low NA fiber amplifier[J]. Optics Express, 24, 6011-6020(2016).
[88] An Y, Li F C, Yang H et al. Single trench fiber-enabled high-power fiber laser[J]. Photonics, 11, 615(2024).
[89] Ma P F, Pan Z Y, Yao T F et al. 5 kW power-level 1050 nm narrow-linewidth fiber amplifier enabled by biconical-tapered active fiber[J]. Optics Letters, 49, 2922-2925(2024).
[90] Li W, Ma P F, Chen Y S et al. Confined-doped fiber enabled kilowatt-level all-fiber laser with 1.28 GHz linewidth[J]. Optics Express, 31, 8855-8863(2023).
[92] Nicholson J W, Pincha J, Kansal I et al. 5 kW single-mode output power from Yb-doped fibers with increased higher-order mode loss[J]. Proceedings of SPIE, 12400, 1240002(2023).
[93] Wickham M, Anderegg J, Brosnan S et al. Coherently coupled high power fiber arrays[C], 23-24(2006).
[96] Liu Z J, Zhou P, Ma P F et al. Coherent polarization synthesis of four high-power narrow-linewidth, linearly polarized fiber amplifiers to achieve 5 kW high-brightness laser output[J]. Chinese Journal of Lasers, 44, 0415004(2017).
[100] Wu J, Ma Y X, Ma P F et al. Coherent synthesis of 20 kW high power output by fiber laser[J]. Infrared and Laser Engineering, 50, 20210621(2021).
[107] Dold E M, Kaiser E, Klausmann K et al. High-performance welding of copper with green multi-kW continuous-wave disk lasers[J]. Proceedings of SPIE, 1091, 10911U(2019).
[108] Wu Z K, Guo L J. Advancements in research on extracavity frequency doubling of narrow-linewidth fiber lasers at 532 nm[J]. Optoelectronics, 14, 1-11(2024).
[109] Su M Q, You Y, Quan Z et al. 610-W continuous-wave single-mode green laser output based on highly efficient single-pass frequency doubling[J]. Chinese Journal of Lasers, 48, 1315002(2021).
[110] Gapontsev V, Avdokhin A, Kadwani P et al. SM green fiber laser operating in CW and QCW regimes and producing over 550 W of average output power[J]. Proceedings of SPIE, 8964, 896407(2014).
[111] Tsubakimoto K, Yoshida H, Miyanaga N. 600 W green and 300 W UV light generated from an eight-beam, sub-nanosecond fiber laser system[J]. Optics Letters, 42, 3255-3258(2017).
[113] Su M Q, You Y, Quan Z et al. 321 W high-efficiency continuous-wave green laser produced by single-pass frequency doubling of narrow-linewidth fiber laser[J]. Applied Optics, 60, 3836-3841(2021).
[114] Abbott B P. Observation of gravitational waves from a binary black hole merger[J]. Physical Review Letters, 116, 061102(2016).
[115] Suemasa A, Shimo-oku A, Ohtsuka S et al. Stable and high power 515-nm lasers for the space gravitational wave detector: DECIGO[J]. Proceedings of SPIE, 11180, 111800V(2019).
Get Citation
Copy Citation Text
Yanshan Wang, Xiaobo Yang, Yujun Feng, Wanjing Peng, Hao Hu, Tenglong Li, Hang Liu, Yao Wang, Shengtao Lin, Jiangcai Wei, Jue Wang, Yinhong Sun, Yanhua Lu, Yi Ma, Chun Tang. Research Progress on High-Power Narrow-Linewidth Linearly Polarized Yb-Doped Fiber Lasers and Their Main Applications (Invited)[J]. Chinese Journal of Lasers, 2024, 51(19): 1901007
Category: laser devices and laser physics
Received: Jun. 18, 2024
Accepted: Oct. 6, 2024
Published Online: Oct. 21, 2024
The Author Email: Ma Yi (rufinecn@163.com)
CSTR:32183.14.CJL240982