Chinese Journal of Lasers, Volume. 49, Issue 15, 1507405(2022)

Surface Enhanced Raman Scattering Detection of Four Foodborne Pathogens Using Positively Charged Silver Nanoparticles and Convolutional Neural Networks

Yong Yang1,2, Hao Dong1,2, Shu Wang1,2、*, Yaosuo Sang1,2, Zhigang Li1,2, Long Zhang1,2、**, Chongwen Wang3, and Yong Liu1,2
Author Affiliations
  • 1Anhui Institute of Optics and Fine Mechanics, Hefei Institute of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, China
  • 2Science Island Branch, Graduate School of University of Science and Technology of China, Hefei 230026, Anhui, China
  • 3School of Life Sciences, Anhui Agricultural University, Hefei 230036, Anhui, China
  • show less
    References(33)

    [1] Hameed S, Xie L J, Ying Y B. Conventional and emerging detection techniques for pathogenic bacteria in food science: a review[J]. Trends in Food Science & Technology, 81, 61-73(2018).

    [2] Barba F J, Koubaa M, do Prado-Silva L et al. Mild processing applied to the inactivation of the main foodborne bacterial pathogens: a review[J]. Trends in Food Science & Technology, 66, 20-35(2017).

    [3] Chen J H, Andler S M, Goddard J M et al. Integrating recognition elements with nanomaterials for bacteria sensing[J]. Chemical Society Reviews, 46, 1272-1283(2017).

    [4] Rajapaksha P, Elbourne A, Gangadoo S et al. A review of methods for the detection of pathogenic microorganisms[J]. The Analyst, 144, 396-411(2019).

    [5] Wohlwend N, Tiermann S, Risch L et al. Evaluation of a multiplex real-time PCR assay for detecting major bacterial enteric pathogens in fecal specimens: intestinal inflammation and bacterial load are correlated in campylobacter infections[J]. Journal of Clinical Microbiology, 54, 2262-2266(2016).

    [6] Nasrabadi Z, Ranjbar R, Poorali F et al. Detection of eight foodborne bacterial pathogens by oligonucleotide array hybridization[J]. Electronic Physician, 9, 4405-4411(2017).

    [7] Kan B A, Zhou H J, Du P C et al. Transforming bacterial disease surveillance and investigation using whole-genome sequence to probe the trace[J]. Frontiers of Medicine, 12, 23-33(2018).

    [8] Hosseini S P, Vázquez-Villegas P, Rito-Palomares M et al. Fundamentals and history of ELISA: the evolution of the immunoassays until invention of ELISA[M]. Hosseini S, Vázquez-Villegas P, Rito-Palomares M, et al. Enzyme-Linked Immunosorbent Assay (ELISA). SpringerBriefs in applied sciences and technology, 1-18(2018).

    [9] Wu C F, Pan H, Zhu Y C. Electric field enhancement for hybrid structure containing silver grating and silver nanoparticles[J]. Chinese Journal of Lasers, 49, 0608003(2022).

    [10] Holt R E, Cotton T M. Surface-enhanced resonance Raman and electrochemical investigation of glucose oxidase catalysis at a silver electrode[J]. Journal of the American Chemical Society, 111, 2815-2821(1989).

    [11] Goodfellow M, O’Donnell A G[M]. Handbook of new bacterial systematics(1993).

    [12] Yang D T, Zhou H B, Haisch C et al. Reproducible E. coli detection based on label-free SERS and mapping[J]. Talanta, 146, 457-463(2016).

    [13] Wang C W, Wang J F, Li M et al. A rapid SERS method for label-free bacteria detection using polyethylenimine-modified Au-coated magnetic microspheres and Au@Ag nanoparticles[J]. The Analyst, 141, 6226-6238(2016).

    [14] Liu E W, Yang Z L, Han L J et al. Fabrication and SERS activity of Cu2O-Ag substrate by in situ growth[J]. Acta Optica Sinica, 41, 0724002(2021).

    [15] Liu Y, Zhou H B, Hu Z W et al. Label and label-free based surface-enhanced Raman scattering for pathogen bacteria detection: a review[J]. Biosensors and Bioelectronics, 94, 131-140(2017).

    [16] Ralbovsky N M, Lednev I K. Towards development of a novel universal medical diagnostic method: Raman spectroscopy and machine learning[J]. Chemical Society Reviews, 49, 7428-7453(2020).

    [17] Lu W L, Chen X Q, Wang L et al. Combination of an artificial intelligence approach and laser tweezers Raman spectroscopy for microbial identification[J]. Analytical Chemistry, 92, 6288-6296(2020).

    [18] Ho C S, Jean N, Hogan C A et al. Rapid identification of pathogenic bacteria using Raman spectroscopy and deep learning[J]. Nature Communications, 10, 4927(2019).

    [19] van Lierop D, Krpetić Ž, Guerrini L et al. Positively charged silver nanoparticles and their effect on surface-enhanced Raman scattering of dye-labelled oligonucleotides[J]. Chemical Communications, 48, 8192-8194(2012).

    [20] de Pascale L, Louet J, Santambrogio F. The Monge problem with vanishing gradient penalization: vortices and asymptotic profile[J]. Journal De Mathématiques Pures et Appliquées, 106, 237-279(2016).

    [21] Goodfellow I J, Pouget-Abadie J, Mirza M et al. Generative adversarial networks[J]. Communications of the ACM, 63, 139-144(2020).

    [22] He K M, Zhang X Y, Ren S Q et al. Identity mappings in deep residual networks[M]. Leibe B, Matas J, Sebe N, et al. Computer vision-ECCV 2016. Lecture notes in computer science, 9908, 630-645(2016).

    [23] Tou J, Yip P, Leung H. Spread-spectrum signals and the chaotic logistic map[J]. Circuits, Systems and Signal Processing, 18, 59-73(1999).

    [24] Chu B, Huang Y, Ni J S et al. Quantitative methods of brain tissue differential pathlength factor based on GS-SVM[J]. Chinese Journal of Lasers, 49, 0507303(2022).

    [25] Wang Q, Zeng W D, Xia Z P et al. Recognition of food-borne pathogenic bacteria by Raman spectroscopy based on random forest algorithm[J]. Chinese Journal of Lasers, 48, 0311002(2021).

    [26] Acquarelli J, van Laarhoven T, Gerretzen J et al. Convolutional neural networks for vibrational spectroscopic data analysis[J]. Analytica Chimica Acta, 954, 22-31(2017).

    [27] Hu S, Kang H Q, Gu F et al. Rapid detection method for pathogenic candida captured by magnetic nanoparticles and identified using SERS via AgNPs[J]. International Journal of Nanomedicine, 16, 941-950(2021).

    [28] Herbert B, Righetti P G. A turning point in proteome analysis: sample prefractionation via multicompartment electrolyzers with isoelectric membranes[J]. Electrophoresis, 21, 3639-3648(2000).

    [29] Butler H J, Ashton L, Bird B et al. Using Raman spectroscopy to characterize biological materials[J]. Nature Protocols, 11, 664-687(2016).

    [30] Chen R P, Yang L, Goodison S et al. Deep-learning approach to identifying cancer subtypes using high-dimensional genomic data[J]. Bioinformatics, 36, 1476-1483(2019).

    [31] Papagiannopoulou C, Parchen R, Rubbens P et al. Fast pathogen identification using single-cell matrix-assisted laser desorption/ionization-aerosol time-of-flight mass spectrometry data and deep learning methods[J]. Analytical Chemistry, 92, 7523-7531(2020).

    [32] Pathania D, Landeros C, Rohrer L et al. Point-of-care cervical cancer screening using deep learning-based microholography[J]. Theranostics, 9, 8438-8447(2019).

    [33] Chen X P, Tang M Q, Liu Y et al. Surface-enhanced Raman scattering method for the identification of methicillin-resistant Staphylococcus aureus using positively charged silver nanoparticles[J]. Microchimica Acta, 186, 102(2019).

    Tools

    Get Citation

    Copy Citation Text

    Yong Yang, Hao Dong, Shu Wang, Yaosuo Sang, Zhigang Li, Long Zhang, Chongwen Wang, Yong Liu. Surface Enhanced Raman Scattering Detection of Four Foodborne Pathogens Using Positively Charged Silver Nanoparticles and Convolutional Neural Networks[J]. Chinese Journal of Lasers, 2022, 49(15): 1507405

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Bio-Optical Sensing and Manipulation

    Received: Dec. 9, 2021

    Accepted: Apr. 1, 2022

    Published Online: Aug. 5, 2022

    The Author Email: Wang Shu (wangshu@aiofm.ac.com), Zhang Long (zhanglong@aiofm.ac.com)

    DOI:10.3788/CJL202249.1507405

    Topics