Laser & Optoelectronics Progress, Volume. 60, Issue 6, 0628002(2023)

DSNet-Based Remote Sensing Image Semantic Segmentation Method

Fangxing Shi1, line Zhou2, Daming Zhu1、*, and Zhitao Fu1
Author Affiliations
  • 1Faculty of Land and Resources Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
  • 2Qujing Vocational and Technical College, Qujing 655000, Yunnan, China
  • show less
    References(21)

    [1] Xu H, Zhu Y H, Zhen T et al. Survey of image semantic segmentation methods based on deep neural network[J]. Journal of Frontiers of Computer Science and Technology, 15, 47-59(2021).

    [2] Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation[C], 3431-3440(2015).

    [3] Badrinarayanan V, Kendall A, Cipolla R. SegNet: a deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39, 2481-2495(2017).

    [5] Lin G S, Milan A, Shen C H et al. RefineNet: multi-path refinement networks for high-resolution semantic segmentation[C], 5168-5177(2017).

    [6] Zhao H S, Shi J P, Qi X J et al. Pyramid scene parsing network[C], 6230-6239(2017).

    [7] Fu J, Liu J, Tian H J et al. Dual attention network for scene segmentation[C], 3141-3149(2019).

    [8] Liang X D, Shen X H, Feng J S et al. Semantic object parsing with graph LSTM[M]. Leibe B, Matas J, Sebe N, et al. Computer vision-ECCV 2016. Lecture notes in computer science, 9905, 125-143(2016).

    [10] Ronneberger O, Fischer P, Brox T. U-Net: convolutional networks for biomedical image segmentation[M]. Navab N, Hornegger J, Wells W M, et al. Medical image computing and computer-assisted intervention-MICCAI 2015. Lecture notes in computer science, 9351, 234-241(2015).

    [12] Liu S W, Cui Z Y, Li D Y. Multi-task learning for building object semantic segmentation of remote sensing image based on UNet network[J]. Remote Sensing for Land & Resources, 32, 74-83(2020).

    [13] Shen Y S, Wang A C. Remote sensing image feature segmentation method based on deep learning[J]. Chinese Journal of Liquid Crystals and Displays, 36, 733-740(2021).

    [14] Zhou Z W, Siddiquee M M R, Tajbakhsh N et al. UNet++: redesigning skip connections to exploit multiscale features in image segmentation[J]. IEEE Transactions on Medical Imaging, 39, 1856-1867(2020).

    [15] Yuan W, Zhou T, Xi Z S et al. MUNet: a multi-branch adaptive deep learning network for remote sensing image semantic segmentation[J]. Journal of Geomatics Science and Technology, 37, 581-588(2020).

    [16] Zhang Y H, Xi M D. A method for extracting buildings from remote sensing images with hole U-Net++ network[J]. Journal of Geomatics, 46, 82-86(2021).

    [17] Huang G, Liu Z, van der Maaten L et al. Densely connected convolutional networks[C], 2261-2269(2017).

    [18] Milletari F, Navab N, Ahmadi S A. V-net: fully convolutional neural networks for volumetric medical image segmentation[C], 565-571(2016).

    [19] Lin T Y, Goyal P, Girshick R et al. Focal loss for dense object detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 42, 318-327(2020).

    Tools

    Get Citation

    Copy Citation Text

    Fangxing Shi, line Zhou, Daming Zhu, Zhitao Fu. DSNet-Based Remote Sensing Image Semantic Segmentation Method[J]. Laser & Optoelectronics Progress, 2023, 60(6): 0628002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Remote Sensing and Sensors

    Received: Nov. 8, 2021

    Accepted: Jan. 7, 2022

    Published Online: Mar. 16, 2023

    The Author Email: Daming Zhu (634617255@qq.com)

    DOI:10.3788/LOP212901

    Topics