Journal of Quantum Optics, Volume. 25, Issue 3, 247(2019)

The Origin of Bivariate Hermite Polynomials and Its Applications in Quantum Optics

YIN Peng-cheng1、*, ZHANG Peng-fei1, and FAN Hong-yi2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(16)

    [1] [1] Glauber R J.The Quantum Theory of Optical Coherence[J].Phys Rev,1963,130: 2529-2539.DOI: https: ∥doi.org/10.1103/PhysRev.130.2529.

    [2] [2] Fan Hongyi.Squeezed States: Operators for Two Types of One-and Two-mode Squeezing Transformations[J].Phys Rev A,1990, 41(3): 1526.DOI: https: ∥doi.org/10.1103/PhysRevA.41.1526.

    [3] [3] Fan H Y.Operator Ordering in Quantum Optics Theory and the Development of Dirac’s Symbolic Method[J].J Opt B: Quantum Semiclass Opt,2003,5: 147-163.DOI: 10.1088/1464-4266/5/4/201.

    [4] [4] Wigner E.On the Quantum Correction for Thermodynamic Equations[J].Phys Rev,1932,40(749).DOI: https: ∥doi.org/10.1103/PhysRev.40.749.

    [5] [5] Fan H Y,Ruan T N.Some Applications of the Coherent State Formulation of the Wigner Operator[J].Commun Theor Phys,1984,3(3): 345-347.DOI: 10.1088/0253-6102/2/6/1563.

    [6] [6] Fan H Y,Ruan T N.Coherent State Formulation of the Weyl Correspondence and the Wigner Function[J].Commun Theor Phys,1983,2(6): 1563-1574.DOI: 10.1088/0253-6102/2/6/1563.

    [7] [7] Fan H Y,Zaidi H R.Application of IWOP Technique to the Generalized Weyl Correspondence[J].Phys Lett A,1987,124: 303-307.DOI: 10.1016/0375-9601(87) 90016-8.

    [8] [8] Zhang W M,Feng D H,Gilmore R.Coherent States: Theory and Some Applications[J].Rev Mod Phys,1990,62(4): 867-927.DOI: 10.1103/revmodphys.62.867.

    [9] [9] FAN Hong Yi,Lu Hai Liang,FAN Yue.Newton-Leibniz Integration for Ket-bra Operators in Quantum Mechanics and Derivation of Entangled State Representations[J].Annals of Physics,2006,321(2): 480-494.DOI: 10.1016/j.aop.2005.09.011.

    [10] [10] FAN Hong Yi.Newton-Leibniz Integration for Ket-bra Operators (Ⅱ)-application in Deriving Density Operator and Generalized Partition Function Formula[J].Annals of Physics,2007,322(4): 866-885.DOI: 10.1016/j.aop.2006.05.003.

    [11] [11] FAN Hong Yi.Newton-Leibniz Integration for Ket-bra Operators (Ⅲ)-Application in Fermionic Quantum Statistics[J].Annals of Physics,2007,322(4): 886-902.DOI: 10.1016/j.aop.2006.10.002.

    [12] [12] FAN Hong Yi.Newton-Leibniz Integration for Ket-bra Operators in Quantum Mechanics (Ⅳ)-Integrations Within Weyl Ordered Product of Operators and Their Applications[J].Annals of Physics,2008,323(2): 500-526.DOI: 10.1016/j.aop.2007.06.003.

    [13] [13] FAN Hong Yi.Newton-Leibniz Integration for Ket-bra Operators in Quantum mechanics (Ⅴ)-Deriving Normally Ordered Bivariate-normal-distribution Form of Density Operators and Developing Their Phase Space Formalism[J].Annals of Physics,2008,323(6): 1502-1528.DOI: 10.1016∥j.aop.2007.08.009.

    [14] [14] Fan Hong Yi, Zhang Peng Fei,Wang Zhen.Generating Function of Product of Bivariate Hermite Polynomials and Their Applications in Studying Quantum Optical States[J].Chin Phys B,2015,24(5): 050303.DOI: 10.1088/1674-1056/24/5/050303.

    [15] [15] Jia Fang,Xu Shuang,Hu Li Yun,et al.New Approach to Generating Functions of Single-and Two-variable Even and Odd-Hermite Polynomials and Applications in Quantum Optics[J].Modern Physics Letters B,2014,28(32): 1450249.DOI: 10.1142/s0217984914502492.

    [16] [16] Liu Zhi Guo.On a System of Partial Differential Equations and the Bivariate Hermite Polynomials[J].J Math Anal Appl,2017,454: 1-17.DOI: 10.1016/j.jmaa.2017.04.066.

    Tools

    Get Citation

    Copy Citation Text

    YIN Peng-cheng, ZHANG Peng-fei, FAN Hong-yi. The Origin of Bivariate Hermite Polynomials and Its Applications in Quantum Optics[J]. Journal of Quantum Optics, 2019, 25(3): 247

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Dec. 17, 2018

    Accepted: --

    Published Online: Sep. 27, 2019

    The Author Email: YIN Peng-cheng (ypch@mail.ustc.edu.cn)

    DOI:10.3788/jqo20192503.0101

    Topics