Acta Optica Sinica, Volume. 43, Issue 17, 1719001(2023)
Research Progress of High-Power Visible to Near-Infrared Supercontinuum Source
[1] Alfano R R[M]. The supercontinuum laser source: the ultimate white light, 434(2016).
[2] Dudley J M, Taylor J R[M]. Supercontinuum generation in optical fibers(2010).
[3] Xie X H, Deng Y P, Johnson S L. Compact and robust supercontinuum generation and post-compression using multiple thin plates[J]. High Power Laser Science and Engineering, 9, e66(2021).
[4] Wang Y Y, Zhang N, Zhang P Q et al. Broadband and coherent supercontinuum generation in all-normal-dispersion double-clad Ge-As-Se-Te fiber taper[J]. Chinese Journal of Lasers, 49, 0101010(2022).
[5] Zhang J, Cai Y R, Huang Q Q et al. Near-infrared comb spectroscopy technology based on flat coherent supercontinuum[J]. Chinese Journal of Lasers, 48, 0711003(2021).
[6] Gosnell T R, Taylor A J, Greene D P. Supercontinuum generation at 248 nm using high-pressure gases[J]. Optics Letters, 15, 130-132(1990).
[7] Jimbo T, Caplan V L, Li Q X et al. Enhancement of ultrafast supercontinuum generation in water by the addition of Zn2+ and K+ cations[J]. Optics Letters, 12, 477-479(1987).
[8] Alfano R R, Shapiro S L. Emission in the region 4000 to 7000 Å via four-photon coupling in glass[J]. Physical Review Letters, 24, 584-587(1970).
[9] Yang L Y, Yang Y K, Zhang B et al. Record power and efficient mid-infrared supercontinuum generation in Germania fiber with high stability[J]. High Power Laser Science and Engineering, 10, e36(2022).
[10] Sierro B, Hänzi P, Spangenberg D et al. Reducing the noise of fiber supercontinuum sources to its limits by exploiting cascaded soliton and wave breaking nonlinear dynamics[J]. Optica, 9, 352-359(2022).
[11] Woyessa G, Kwarkye K, Dasa M K et al. Power stable 1.5-10.5 µm cascaded mid-infrared supercontinuum laser without thulium amplifier[J]. Optics Letters, 46, 1129-1132(2021).
[12] Genier E, Grelet S, Engelsholm R D et al. Ultra-flat, low-noise, and linearly polarized fiber supercontinuum source covering 670–1390 nm[J]. Optics Letters, 46, 1820-1823(2021).
[14] Manninen A, Kääriäinen T, Parviainen T et al. Long distance active hyperspectral sensing using high-power near-infrared supercontinuum light source[J]. Optics Express, 22, 7172-7177(2014).
[15] Yamanaka M, Kawagoe H, Nishizawa N. High-power supercontinuum generation using high-repetition-rate ultrashort-pulse fiber laser for ultrahigh-resolution optical coherence tomography in 1600 nm spectral band[J]. Applied Physics Express, 9, 022701(2016).
[16] Barrick J, Doblas A, Gardner M R et al. High-speed and high-sensitivity parallel spectral-domain optical coherence tomography using a supercontinuum light source[J]. Optics Letters, 41, 5620-5623(2016).
[17] Hakala T, Suomalainen J, Kaasalainen S et al. Full waveform hyperspectral LiDAR for terrestrial laser scanning[J]. Optics Express, 20, 7119-7127(2012).
[18] Lamb R A. A review of ultra-short pulse lasers for military remote sensing and rangefinding[J]. Proceedings of SPIE, 7483, 748308(2009).
[19] Yang L Y, Zhang B, Hou J. Progress on high-power supercontinuum laser sources at 3-5 μm[J]. Chinese Journal of Lasers, 49, 0101001(2022).
[20] Yang W Q, Song R, Han K et al. Research progress of supercontinuum laser source[J]. Journal of National University of Defense Technology, 42, 1-9(2020).
[21] Hou J, Chen S P, Chen Z L et al. Recent developments and key technology analysis of high power supercontinuum source[J]. Laser & Optoelectronics Progress, 50, 080010(2013).
[22] Bian Y X, Jiao K R, Wu X C et al. Utilizing phase-shifted long-period fiber grating to suppress spectral broadening of a high-power fiber MOPA laser system[J]. High Power Laser Science and Engineering, 9, e39(2021).
[23] Ma P F, Xiao H, Meng D R et al. High power all-fiberized and narrow-bandwidth MOPA system by tandem pumping strategy for thermally induced mode instability suppression[J]. High Power Laser Science and Engineering, 6, e57(2018).
[24] Hui Z Q, Zhang X L, Xu W S et al. 500-nm broadband light generation in highly nonlinear dispersion shifted fiber by soliton laser[J]. Optics & Laser Technology, 157, 108712(2023).
[25] Chai T, Li X H, Guo P L. Investigation of mid-infrared parabolic pulse evolution in a mode-locked Er-doped fiber laser based on the nonlinear polarization rotation technique[J]. Journal of Optics, 21, 025501(2019).
[26] Li X H, Huang X W, Hu X C et al. Recent progress on mid-infrared pulsed fiber lasers and the applications[J]. Optics & Laser Technology, 158, 108898(2023).
[27] Dudley J M, Taylor J R. Ten years of nonlinear optics in photonic crystal fibre[J]. Nature Photonics, 3, 85-90(2009).
[28] Qi X, Chen S P, Li Z H et al. High-power visible-enhanced all-fiber supercontinuum generation in a seven-core photonic crystal fiber pumped at 1016 nm[J]. Optics Letters, 43, 1019-1022(2018).
[29] Zhang H Y, Li Y, Yan D L et al. All-fiber high power supercontinuum generation by cascaded photonic crystal fibers ranging from 370 nm to 2400 nm[J]. IEEE Photonics Journal, 12, 7101608(2020).
[30] Zhang H Y, Li F Y, Liao R Y et al. Supercontinuum generation of 314.7 W ranging from 390 to 2400 nm by tapered photonic crystal fiber[J]. Optics Letters, 46, 1429-1432(2021).
[31] Liu Z W, Wright L G, Christodoulides D N et al. Kerr self-cleaning of femtosecond-pulsed beams in graded-index multimode fiber[J]. Optics Letters, 41, 3675-3678(2016).
[32] Mondal P, Varshney S K. Experimental observation of Kerr beam self-cleaning in graded-index multimode fiber from higher-order mode to fundamental mode[J]. Optical Fiber Technology, 65, 102587(2021).
[33] Krupa K, Tonello A, Shalaby B M et al. Spatial beam self-cleaning in multimode fibres[J]. Nature Photonics, 11, 237-241(2017).
[34] Krupa K, Louot C, Couderc V et al. Spatiotemporal characterization of supercontinuum extending from the visible to the mid-infrared in a multimode graded-index optical fiber[J]. Optics Letters, 41, 5785-5788(2016).
[35] Krupa K, Tonello A, Barthélémy A et al. Observation of geometric parametric instability induced by the periodic spatial self-imaging of multimode waves[J]. Physical Review Letters, 116, 183901(2016).
[36] Pourbeyram H, Agrawal G P, Mafi A. Stimulated Raman scattering cascade spanning the wavelength range of 523 to 1750 nm using a graded-index multimode optical fiber[J]. Applied Physics Letters, 102, 201107(2013).
[37] Lopez-Galmiche G, Sanjabi Eznaveh Z, Eftekhar M A et al. Visible supercontinuum generation in a graded index multimode fiber pumped at 1064 nm[J]. Optics Letters, 41, 2553(2016).
[38] Zhang T, Zhang W, Hu X H et al. All fiber structured supercontinuum source based on graded-index multimode fiber[J]. Laser Physics Letters, 19, 035101(2022).
[39] Zhang T, Hu X H, Pan R et al. 30 W all-fiber supercontinuum generation via graded-index multimode fiber pumped by picoseconds laser pulse[J]. Optics & Laser Technology, 159, 108943(2023).
[40] Jiang L, Song R, Hou J. Hundred-watt level all-fiber visible supercontinuum generation from a graded-index multimode fiber[J]. Chinese Optics Letters, 21, 051403(2023).
[41] Chen X L, Lou F G, He Y et al. Home-made 10 kW fiber laser with high efficiency[J]. Acta Optica Sinica, 39, 0336001(2019).
[42] Pioger P H, Couderc V, Leproux P et al. High spectral power density supercontinuum generation in a nonlinear fiber amplifier[J]. Optics Express, 15, 11358-11363(2007).
[43] Song R, Hou J, Chen S P et al. High power supercontinuum generation in a nonlinear ytterbium-doped fiber amplifier[J]. Optics Letters, 37, 1529-1531(2012).
[44] Song R, Hou J, Liu T et al. A hundreds of watt all-fiber near-infrared supercontinuum[J]. Laser Physics Letters, 10, 065402(2013).
[45] Jiang L, Song R, He J R et al. 714 W all-fiber supercontinuum generation from an ytterbium-doped fiber amplifier[J]. Optics & Laser Technology, 161, 109168(2023).
[46] Rao Y J, Wang Z N, Zhang W L[M]. Principle and application of fiber random laser(2018).
[47] Lizárraga N, Puente N P, Chaikina E I et al. Single-mode Er-doped fiber random laser with distributed Bragg grating feedback[J]. Optics Express, 17, 395-404(2009).
[48] Ma R, Zhang W L, Wang S S et al. Simultaneous generation of random lasing and supercontinuum in a completely-opened fiber structure[J]. Laser Physics Letters, 15, 085111(2018).
[49] Ma R, Rao Y J, Zhang W L et al. Backward supercontinuum generation excited by random lasing[J]. IEEE Journal of Selected Topics in Quantum Electronics, 24, 0901105(2018).
[50] Arun S, Choudhury V, Balaswamy V et al. High power, high efficiency, continuous-wave supercontinuum generation using standard telecom fibers[J]. Optics Express, 26, 7979-7984(2018).
[51] Arun S, Choudhury V, Balaswamy V et al. Octave-spanning, continuous-wave supercontinuum generation with record power using standard telecom fibers pumped with power-combined fiber lasers[J]. Optics Letters, 45, 1172-1175(2020).
[52] Cheng X, Dong J Y, Zeng X et al. 130 W continuous-wave supercontinuum generation within a random Raman fiber laser[J]. Optical Fiber Technology, 68, 102825(2022).
[53] Qi T C, Yang Y S, Li D et al. Kilowatt-level supercontinuum generation in random Raman fiber laser oscillator with full-open cavity[J]. Journal of Lightwave Technology, 40, 7159-7166(2022).
[54] Chen L J, Song R, Lei C M et al. Random fiber laser directly generates visible to near-infrared supercontinuum[J]. Optics Express, 27, 29781-29788(2019).
[55] Chen L, Song R, Lei C et al. Influences of position of ytterbium-doped fiber and ASE pump on spectral properties of random fiber laser[J]. Optics Express, 27, 9647-9654(2019).
[56] He J R, Song R, Tao Y et al. Supercontinuum generation directly from a random fiber laser based on photonic crystal fiber[J]. Optics Express, 28, 27308-27315(2020).
[57] He J R, Song R, Jiang L et al. Supercontinuum generated in an all-polarization-maintaining random fiber laser structure[J]. Optics Express, 29, 28843-28851(2021).
[58] He J R. Study on supercontinuum generated by random fiber laser[D], 55-57(2022).
[59] Gapontsev V, Fomin F A, Abramov M. Diffraction limited ultra-high power fibre lasers[C], AWA1(2010).
[60] Zhou H, Jin A, Chen Z et al. Combined supercontinuum source with >200 W power using a 3×1 broadband fiber power combiner[J]. Optics Letters, 40, 3810-3813(2015).
[61] Zhang B. The study on the incoherent combination of near-infrared supercontinuum source[D], 34-41(2015).
[62] Sun C, Ge T W, Cao K et al. 143.4 W high power combined white supercontinuum source using a (7×1) supercontinuum fiber combiner[J]. Frontiers in Physics, 10, 1043435(2022).
Get Citation
Copy Citation Text
Li Jiang, Rui Song, Jing Hou, Shengping Chen, Bin Zhang, Linyong Yang, Jiaxin Song, Weiqiang Yang, Kai Han. Research Progress of High-Power Visible to Near-Infrared Supercontinuum Source[J]. Acta Optica Sinica, 2023, 43(17): 1719001
Category: Nonlinear Optics
Received: Mar. 31, 2023
Accepted: May. 15, 2023
Published Online: Sep. 11, 2023
The Author Email: Song Rui (srnotice@163.com), Hou Jing (houjing25@sina.com)