Infrared and Laser Engineering, Volume. 52, Issue 2, 20220366(2023)
ICESat-2 lidar sea surface signal extraction and ocean wave element calculation
[1] [1] Liu Y G. Satellite Oceanography[M]. Beijing: Higher Education Press, 2009. (in Chinese)
[2] Gommenginger C P, Srokosz M A, Challenor P G, et al. Measuring ocean wave period with satellite altimeters: A simple empirical model[J]. Geophysical Research Letters, 30, 2150(2003).
[3] Quilfen Y, Chapron B, Collard F, et al. Calibration/validation of an altimeter wave period model and application to TOPEX/Poseidon and Jason-1 altimeters[J]. Marine Geodesy, 27, 535-549(2004).
[4] Mackay E B L, Retzler C H, Challenor P G, et al. A parametric model for ocean wave period from Ku band altimeter data[J]. Journal of Geophysical Research: Oceans, 113, C03029(2008).
[5] [5] Yang J S. Synthetic Aperture Radar Remote Sensing Technology f Sea Surface Wind Field, Ocean Wave Internal Wave[M]. Beijing: China Ocean Press, 2005. (in Chinese)
[6] Neumann T A, Martino A J, Markus T, et al. The Ice, Cloud, And Land Elevation Satellite–2 mission: A global geolocated photon product derived from the Advanced Topographic Laser Altimeter System[J]. Remote Sensing of Environment, 233, 111325(2019).
[7] [7] Neumann T, Brenner A, Hancock D, et al. Algithm theetical basis document (ATBD) f global geolocated photons[R]. Washington: National Aeronautics Space Administration, 2021.
[8] Neuenschwander A, Pitts K. The ATL08 land and vegetation product for the ICESat-2 Mission[J]. Remote Sensing of Environment, 221, 247-259(2019).
[9] Herzfeld U C, McDonald B W, Wallin B F, et al. Algorithm for detection of ground and canopy cover in micropulse photon-counting lidar altimeter data in preparation for the ICESat-2 mission[J]. IEEE Transactions on Geoscience and Remote Sensing, 52, 2109-2125(2013).
[10] Zhang J, Kerekes J. An adaptive density-based model for extracting surface returns from photon-counting laser altimeter data[J]. IEEE Geoscience and Remote Sensing Letters, 12, 726-730(2014).
[11] Ma Y, Liu R, Li S, et al. Detecting the ocean surface from the raw data of the MABEL photon-counting lidar[J]. Optics Express, 26, 24752-24762(2018).
[12] [12] Trujillo A P, Thurman H V. Essentials of Oceanography[M]. 11st ed. Translated by Zhang Ronghua, Li Xinzheng, Li Anchun. Beijing: Publishing House of Electronics Industry, 2017. (in Chinese)
[13] [13] Mison J, Hancock D, Dickinson S, et al. Algithm theetical basis document (ATBD) f ocean surface height[R]. Maryl: Goddard Space Flight Center Greenbelt(NASA), 2021.
[14] Markus T, Neumann T, Martino A, et al. The Ice, Cloud, and land Elevation Satellite-2 (ICESat-2): Science requirements, concept, and implementation[J]. Remote Sensing of Environment, 190, 260-273(2017).
[15] [15] Zapevalov A, Pokazeev K, Chaplina T. Simulation of the Sea Surface f Remote Sensing[M]. Cham, Switzerl: Springer, 2021.
[16] Zhang W H, Li S, Ma Y, et al. Photon-counting lidar simulation method based on three-dimensional sea surface[J]. Journal of Infrared and Millimeter Waves, 39, 483-490(2020).
[17] Nilsson B, Andersen O B, Ranndal H, et al. Consolidating ICESat-2 ocean wave characteristics with CryoSat-2 during the CRYO2 ICE campaign[J]. Remote Sensing, 14, 1300(2022).
[18] Klotz B W, Neuenschwander A, Magruder L A. High-resolution ocean wave and wind characteristics determined by the ICESat-2 land surface algorithm[J]. Geophysical Research Letters, 47, e2019GL085907(2020).
[19] [19] Hersbach H, Bell B, Berrisfd P, et al. ERA5 hourly data on single levels from 1979 to present[EBOL]. (20180614) [20211203]. https:cds.climate.copernicus.eucdsapp#!datasetreanalysisera5singlelevelstab=overview.
[20] [20] He Y J, Qiu Z F, Zhang B, et al. Wave Observation Technology[M]. Beijing: Science Press, 2015. (in Chinese)
[21] Zhou X, Yang J, Li S. Model of sea surface echos from spaceborne single photon lidar[J]. Acta Optica Sinica, 41, 1928002(2021).
Get Citation
Copy Citation Text
Zhibiao Zhou, Hui Zhou, Yue Ma, Yue Song, Song Li. ICESat-2 lidar sea surface signal extraction and ocean wave element calculation[J]. Infrared and Laser Engineering, 2023, 52(2): 20220366
Category: Lasers & Laser optics
Received: May. 27, 2022
Accepted: --
Published Online: Mar. 13, 2023
The Author Email: