Journal of Synthetic Crystals, Volume. 53, Issue 3, 426(2024)
Fabrication and Characterization of Wafer-Scale Thin-Film Lithium Niobate Waveguides
[1] [1] BOES A, CHANG L, LANGROCK C, et al. Lithium niobate photonics: unlocking the electromagnetic spectrum[J]. Science, 2023, 379(6627): eabj4396.
[2] [2] NIKOGOSYAN D N. Nonlinear optical crystals: a complete survey[M]. Berlin: Springer Science Business Media Inc, 2005.
[3] [3] RABIEI P, GUNTER P. Optical and electro-optical properties of submicrometer lithium niobate slab waveguides prepared by crystal ion slicing and wafer bonding[J]. Applied Physics Letters, 2004, 85(20): 4603.
[4] [4] ZHANG M, WANG C, KHAREL P, et al. Integrated lithium niobate electro-optic modulators: when performance meets scalability[J]. Optica, 2021, 8(5): 652.
[5] [5] BOES A, CORCORAN B, CHANG L, et al. Status and potential of lithium niobate on insulator (LNOI) for photonic integrated circuits[J]. Laser & Photonics Reviews, 2018, 12(4): 1700256.
[6] [6] ZHU D, SHAO L B, YU M J, et al. Integrated photonics on thin-film lithium niobate[J]. Advances in Optics and Photonics, 2021, 13(2): 242-352.
[7] [7] WANG C, ZHANG M, STERN B, et al. Nanophotonic lithium niobate electro-optic modulators[J]. Optics Express, 2018, 26(2): 1547-1555.
[8] [8] WANG C, ZHANG M, CHEN X, et al. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages[J]. Nature, 2018, 562: 101-104.
[9] [9] ZHANG M, BUSCAINO B, WANG C, et al. Broadband electro-optic frequency comb generation in a lithium niobate microring resonator[J]. Nature, 2019, 568: 373-377.
[10] [10] GONG Z, LIU X W, XU Y T, et al. Soliton microcomb generation at 2 μm in z-cut lithium niobate microring resonators[J]. Optics Letters, 2019, 44(12): 3182-3185.
[11] [11] WANG C, XIONG X, ANDRADE N, et al. Second harmonic generation in nano-structured thin-film lithium niobate waveguides[J]. Optics Express, 2017, 25(6): 6963-6973.
[12] [12] XUE G T, NIU Y F, LIU X Y, et al. Ultrabright multiplexed energy-time-entangled photon generation from lithium niobate on insulator chip[J]. Physical Review Applied, 2021, 15(6): 064059.
[13] [13] NIU Y F, LIN C, LIU X Y, et al. Optimizing the efficiency of a periodically poled LNOI waveguide using in situ monitoring of the ferroelectric domains[J]. Applied Physics Letters, 2020, 116(10): 101104.
[14] [14] CAI L T, MAHMOUD A, KHAN M, et al. Acousto-optical modulation of thin film lithium niobate waveguide devices[J]. Photonics Research, 2019, 7(9): 1003.
[15] [15] WU R B, WANG M, XU J, et al. Long low-loss-litium niobate on insulator waveguides with sub-nanometer surface roughness[J]. Nanomaterials, 2018, 8(11): 910.
[16] [16] WU R B, ZHANG J H, YAO N, et al. Lithium niobate micro-disk resonators of quality factors above 107[J]. Optics Letters, 2018, 43(17): 4116-4119.
Get Citation
Copy Citation Text
[in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese]. Fabrication and Characterization of Wafer-Scale Thin-Film Lithium Niobate Waveguides[J]. Journal of Synthetic Crystals, 2024, 53(3): 426
Category:
Received: Jan. 14, 2024
Accepted: --
Published Online: Jul. 30, 2024
The Author Email: (xphu@nju.edu.cn)
CSTR:32186.14.