Acta Optica Sinica, Volume. 32, Issue 5, 528004(2012)
A New Method Based on Multimodal Stationary Sequence Modeling for Radar HRRP Target Recognition under Small Training Set Conditions
[1] [1] Xia Zhiwei, Li Qi, Ding Shenghui et al.. Ladar intensity image denoising by non-local means algorithm[J]. Acta Optica Sinica, 2011, 31(s1): s100409
[3] [3] Dong Jihui, Hu Qiquan, Sun Dongsong. Techniques of depressing image noise in laser imaging tracking system[J]. Chinese J. Lasers, 2011, 38(1): 0109002
[4] [4] S. P. Jacobs, J. A. O′ Sullivan. Automatic target recognition using sequences of high resolution radar range profiles[J]. IEEE Trans. Aerospace & Electron. Syst., 2000, 36(2): 364~380
[5] [5] K. Copsey, A. R. Webb. Bayesian Gamma mixture model approach to radar target recognition[J]. IEEE Trans. Aerospace & Electron. Syst., 2003, 39(4): 1201~1217
[6] [6] L. Du, H. Liu, Z. Bao et al.. A two-distribution compounded statistical model for radar HRRP target recognition[J]. IEEE Trans. Signal Process., 2006, 54(6): 2226~2238
[7] [7] L. Du, H. Liu, Z. Bao. Radar HRRP statistical recognition: parametric model and model selection[J]. IEEE Trans. Signal Process., 2008, 56(5): 1931~1944
[8] [8] A. Zyweck, R. E. Bogner. Radar target classification of commercial aircraft[J]. IEEE Trans. Aerospace & Electron. Syst., 1996, 32(2): 598~606
[9] [9] B. Pei, Z. Bao. Multi-aspect radar target recognition method based on scattering centers and HMMs classifiers[J]. IEEE Trans. Aerospace & Electron. Syst., 2005, 41(3): 1067~1074
[10] [10] K. Kim, D. Seo, H. Kim. Efficient radar target recognition using the MUSIC algorithm and invariant feature[J]. IEEE Trans. Antennas & Propag., 2002, 50(3): 325~337
[11] [11] E. Avci, I. Turkoglua, M. Poyraz. Intelligent target recognition based on wavelet packet neural network[J]. Expert Systems with Applications, 2005, 29(1): 175~182
[12] [12] R. O. Duda, P. E. Hart, D. G. Stork. Pattern Classification[M]. New York: John Willy and Sons, 2001
[13] [13] H. L. Van Trees. Detection, Estimation, and Modulation Theory, Part III[M]. New York: John Willy and Sons, 2001
[14] [14] P. Wang, F. Dai, M. Pan et al.. Radar HRRP target recognition in frequency domain based on autoregressive model[C]. IEEE Radar Conference, Kansas City, USA, 2011. 714~717
[15] [15] G. J. McLachlan, D. Peel. Finite Mixture Models[M]. New York: John Willy and Sons, 2000
[16] [16] Xia Zhiwei, Li Qi, Wang Qi. Simulation of coherent Lidar range image restoration based on Kalman filtering[J]. Laser & Optoelectronics Progress, 2011, 48(5): 051002
[19] [19] B. Ristick, S. Arulampalam, N. Gordon. Beyond the Kalman Filters: Particle Filters for Tracking Applications[M]. USA: Artech House, 2004
[20] [20] Arnaud Doucet, Simon Godsill, Christophe Andrieu. On sequential Monte Carlo sampling methods for Bayesian filtering[J]. Statistics and Computing, 2000, 10(3): 197~208
[21] [21] S. K. Wong. High range resolution profiles as motion-invariant features for moving ground targets identification in SAR-based automatic target recognition[J]. IEEE Trans. Aerospace & Electron. Syst., 2009, 45(3): 1017~1039
[22] [22] T. Fawcett. An introduction to ROC analysis[J]. Pattern Recognition Letters, 2006, 27(8): 861~874
Get Citation
Copy Citation Text
Wang Penghui, Xia Shuangzhi, Pan Mian, Zhang Xuefeng, Du Lan, Liu Hongwei. A New Method Based on Multimodal Stationary Sequence Modeling for Radar HRRP Target Recognition under Small Training Set Conditions[J]. Acta Optica Sinica, 2012, 32(5): 528004
Category: Remote Sensing and Sensors
Received: Jan. 11, 2012
Accepted: --
Published Online: May. 2, 2012
The Author Email: Penghui Wang (wangpenghui@mail.xidian.edu.cn)