Chinese Journal of Liquid Crystals and Displays, Volume. 38, Issue 5, 680(2023)

Road object detection algorithm based on improved YOLOv5s

Qing ZHOU1,2, Gong-quan TAN1,2、*, Song-lin YIN1,2, Yi-nian LI1,2, and Dan-qin WEI1,2
Author Affiliations
  • 1School of Automation and Information Engineering,Sichuan University of Science & Engineering,Zigong 643000,China
  • 2Artificial Intelligence Key Laboratory of Sichuan Province,Yibin 644000,China
  • show less
    Figures & Tables(14)
    Focus structure diagram
    PAN network structure diagram
    Overall network structure diagram of YOLOv5s after improvement
    Ordinary convolution process
    Deep separable convolution process
    MobileNet-V3-SE module
    Schematic diagram of feature extraction module Bi-FPN
    Three cases with the same GIoU value
    Loss function curves
    (a)and(b)comparison diagram of detection effect under the scene
    • Table 1. Ablation experimental results of the algorithm on KITTI dataset

      View table
      View in Article

      Table 1. Ablation experimental results of the algorithm on KITTI dataset

      网络模型MobileNet-V3轻量化主干网络Bi-FPN特征提取CIoU损失优化模型大小/MBP/%R/%mAP/%每帧推理时间/ms
      YOLOv5s46.090.5191.7079.6034
      A14.188.6790.376.9330
      B44.091.9392.0281.2835
      C45.391.5092.6080.5635
      D15.792.7193.0382.6331
      E15.392.4793.5183.1031
      F44.794.0394.1983.5236
      本文算法13.695.1296.0385.4028
    • Table 2. Ablation experimental results of the algorithm on the BDD dataset

      View table
      View in Article

      Table 2. Ablation experimental results of the algorithm on the BDD dataset

      网络模型MobileNet-V3轻量化主干网络Bi-FPN特征提取CIoU损失优化模型大小/MBP/%R/%mAP/%每帧推理时间/ms
      YOLOv5s50.561.5362.948.7541
      A18.055.7156.0746.4138
      B49.762.4563.0050.8843
      C50.362.0762.8350.4242
      D19.263.4863.2452.7537
      E19.663.0963.9752.6137
      F49.064.2365.3853.9442
      本文算法16.765.8466.3554.2037
    • Table 3. Comparison of detection results under different network models

      View table
      View in Article

      Table 3. Comparison of detection results under different network models

      目标检测算法主干网络模型大小/MBmAP/%每帧推理时间/ms
      Faster RCNNResNet50160.276.330
      SSDVGG16112.169.795
      YOLOv3Darknet-53240.07377
      YOLOv4CSPDarknet-53255.075.164
      YOLOv4_tinyCSPDarknet53_tiny29.665.849
      YOLOv5sCSPDarknet4681.034
      文献[20FGHDet2.674.435
      文献[21MobileNetV126.381.136
      本文算法MobileNetV313.685.428
    • Table 4. Test result data of two network models under scenarios(a)and(b)

      View table
      View in Article

      Table 4. Test result data of two network models under scenarios(a)and(b)

      目标类别场景(a)下检测目标个数场景(b)下检测目标个数
      DontcarePersonTruckCarTraffic lightTraffic signPersonCar
      真实标注值472247113
      YOLOv5s算法670138311
      本文算法472237112
    Tools

    Get Citation

    Copy Citation Text

    Qing ZHOU, Gong-quan TAN, Song-lin YIN, Yi-nian LI, Dan-qin WEI. Road object detection algorithm based on improved YOLOv5s[J]. Chinese Journal of Liquid Crystals and Displays, 2023, 38(5): 680

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: Jul. 30, 2022

    Accepted: --

    Published Online: Jul. 4, 2023

    The Author Email: Gong-quan TAN (tgq77@126.com)

    DOI:10.37188/CJLCD.2022-0257

    Topics