Journal of Synthetic Crystals, Volume. 53, Issue 8, 1394(2024)

Simulation on ZnS/SnS Solar Cells with Spiro-OMeTAD as Hole Transport Layer

TANG Huazhu, XIAO Qingquan*, FU Shasha, and XIE Quan
Author Affiliations
  • [in Chinese]
  • show less
    References(47)

    [1] [1] BANERJEE P. Impact of thermally grown ZnS1-xOx buffer layer over the photovoltaic performance of SnS/ZnS heterostructure[J]. Materials Letters, 2022, 320: 132347.

    [2] [2] REDDY N K, REDDY R K T. Optical behaviour of sprayed tin sulphide thin films[J]. Materials Research Bulletin, 2006, 41(2): 414-422.

    [3] [3] CHO J Y, SINHA S, GANG M G, et al. Controlled thickness of a chemical-bath-deposited CdS buffer layer for a SnS thin film solar cell with more than 3% efficiency[J]. Journal of Alloys and Compounds, 2019, 796: 160-166.

    [5] [5] ZTRK H, ASLAN F. Preparation of high-quality SnS thin films for self-powered photodetectors and solar cells using a low-temperature powder technique[J]. Optical Materials, 2022, 131: 112755.

    [6] [6] LEE N, BANG M, CHOI H, et al. Effect of H2 annealing on SnS thin films grown by thermal evaporation and their transfer characteristics with Ti, W, and Mo electrodes[J]. Thin Solid Films, 2021, 732: 138779.

    [7] [7] ASLAN F, ARSLAN F, TUMBUL A, et al. Synthesis and characterization of solution processed p-SnS and n-SnS2 thin films: effect of starting chemicals[J]. Optical Materials, 2022, 127: 112270.

    [8] [8] AREPALLI V K, SHIN Y, KIM J. Photovoltaic behavior of the room temperature grown RF-Sputtered SnS thin films[J]. Optical Materials, 2019, 88: 594-600.

    [9] [9] ZHAO X Z, DAVIS L M, LOU X B, et al. Study of the crystal structure of SnS thin films by atomic layer deposition[J]. AIP Advances, 2021, 11(3): 035144.

    [10] [10] MAHDI M S, AL-ARAB H S, HMOOD A, et al. Structure, morphology, and photoresponse characteristics dependence on substrate nature of grown π-SnS films using chemical bath deposition[J]. Optical Materials, 2022, 123: 111910.

    [11] [11] OGAH O E, REDDY K R, ZOPPI G, et al. Annealing studies and electrical properties of SnS-based solar cells[J]. Thin Solid Films, 2011, 519(21): 7425-7428.

    [12] [12] GHOSH B, DAS M, BANERJEE P, et al. Fabrication of vacuum-evaporated SnS/CdS heterojunction for PV applications[J]. Solar Energy Materials and Solar Cells, 2008, 92(9): 1099-1104.

    [13] [13] REDDY R K T, REDDY K N, MILES R W. Photovoltaic properties of SnS based solar cells[J]. Solar Energy Materials and Solar Cells, 2006, 90(18-19): 3041-3046.

    [14] [14] FERHATI H, DJEFFAL F, ABDELMALEK F. Towards improved efficiency of SnS solar cells using back grooves and strained-SnO2 buffer layer: FDTD and DFT calculations[J]. Journal of Physics and Chemistry of Solids, 2023, 178: 111353.

    [15] [15] ARULANANTHAM A M S, VALANARASU S, KATHALINGAM A, et al. An investigation on SnS layers for solar cells fabrication with CdS, SnS2 and ZnO window layers prepared by nebulizer spray method[J]. Applied Physics A, 2018, 124(11): 776.

    [16] [16] PANDEY S, SADANAND, SINGH P K, et al. Numerical studies of optimising various buffer alyers to enhance the performance of tin sulfide (SnS)-based solar cells[J]. Transactions on Electrical and Electronic Materials, 2021, 22(6): 893-903.

    [17] [17] JIANG F, SHEN H L, JIAO J. Effect of the thickness on the optoelectronic properties of SnS films and photovoltaic performance of SnS/i-a-Si/n-a-Si solar cells[J]. Applied Physics A, 2014, 117(4): 2167-2173.

    [18] [18] XU J X, YANG Y Z. Study on the performances of SnS heterojunctions by numerical analysis[J]. Energy Conversion and Management, 2014, 78: 260-265.

    [19] [19] MIYAWAKI T, ICHIMURA M. Fabrication of ZnS thin films by an improved photochemical deposition method and application to ZnS/SnS heterojunction cells[J]. Materials Letters, 2007, 61(25): 4683-4686.

    [20] [20] QIU K F, XIE Q, QIU D P, et al. Fabrication and simulation of ZnS/p-Si heterojunction solar cells[J]. Materials Letters, 2017, 198: 760-764.

    [21] [21] ABDALLAH B, ALNAMA K, NASRALLAH F. Deposition of ZnS thin films by electron beam evaporation technique, effect of thickness on the crystallographic and optical properties[J]. Modern Physics Letters B, 2019, 33(4): 1950034.

    [22] [22] TORRES-RICRDEZ R, LIZAMA-TZEC F I, GARCA-MENDOZA M F, et al. Electrodeposited stoichiometric zinc sulfide films[J]. Ceramics International, 2020, 46(8): 10490-10494.

    [23] [23] ATES A, YLDRM M A, KUNDAKC M, et al. Annealing and light effect on optical and electrical properties of ZnS thin films grown with the SILAR method[J]. Materials Science in Semiconductor Processing, 2007, 10(6): 281-286.

    [24] [24] ZHANG W J, ZHANG Q, ZHANG Y B, et al. CdSe/ZnS quantum-dot light-emitting diodes with spiro-OMeTAD as buffer layer[J]. IEEE Transactions on Electron Devices, 2019, 66(11): 4901-4906.

    [25] [25] LOU Q, LI H L, HUANG Q S, et al. Multifunctional CNT∶TiO2 additives in spiro-OMeTAD layer for highly efficient and stable perovskite solar cells[J]. EcoMat, 2021, 3(3): e12099.

    [26] [26] TIWARI P, ALOTAIBI M F, AL-HADEETHI Y, et al. Design and simulation of efficient SnS-based solar cell using spiro-OMeTAD as hole transport Layer[J]. Nanomaterials, 2022, 12(14): 2506.

    [27] [27] WANG Y P, WANG J, LI H R, et al. wxAMPS theoretical study of the bandgap structure of CZTS thin film to improve the device performance[J]. Optoelectronics Letters, 2021, 17(8): 475-481.

    [28] [28] LIU Y M, SUN Y, ROCKETT A. A new simulation software of solar cells—wxAMPS[J]. Solar Energy Materials and Solar Cells, 2012, 98: 124-128.

    [29] [29] YING M, WEN J J, ZHAO Y. Numerical simulation of CuInSe2 solar cells using wxAMPS software[J]. Chinese Journal of Physics, 2022, 76: 24-34.

    [30] [30] YUAN J R, WANG J S, LIU S Q, et al. Numerical simulation of SnS/CZTSSe heterojunction solar cells[J]. Journal of Ovonic Research, 2023, 19(1): 31-41.

    [31] [31] XIAO L, WANG G X, YAO J X. Enhanced hole extraction in green energy perovskite solar cell by CuOx/spiro-OMeTAD bilayer with improved performance[J]. IOP Conference Series: Earth and Environmental Science, 2021, 804(3): 032062.

    [32] [32] HOSSAIN M I, ALHARBI F H, TABET N. Copper oxide as inorganic hole transport material for lead halide perovskite based solar cells[J]. Solar Energy, 2015, 120: 370-380.

    [33] [33] KEARNEY K L, ROCKETT A A. Simulation of charge transport and recombination across functionalized Si (111) photoelectrodes[J]. Journal of the Electrochemical Society, 2016, 163(7): H598-H604.

    [36] [36] GUPTA Y, ARUN P. Optimization of SnS active layer thickness for solar cell application[J]. Journal of Semiconductors, 2017, 38(11): 113001.

    [37] [37] MARINOVA N, TRESS W, HUMPHRY-BAKER R, et al. Light harvesting and charge recombination in CH3NH3PbI3 perovskite solar cells studied by hole transport layer thickness variation[J]. ACS Nano, 2015, 9(4): 4200-4209.

    [39] [39] BHARGAVA R N, GALLAGHER D, HONG X, et al. Optical properties of manganese-doped nanocrystals of ZnS[J]. Physical Review Letters, 1994, 72(3): 416-419.

    [40] [40] NAZ H, ALI R N, ZHU X Q, et al. Effect of Mo and Ti doping concentration on the structural and optical properties of ZnS nanoparticles[J]. Physica E Low-dimensional Systems and Nanostructures, 2018, 100: 1-6.

    [41] [41] RAJ C J, PRABAKAR K, KARTHICK S N, et al. Banyan root structured Mg-doped ZnO photoanode dye-sensitized solar cells[J]. The Journal of Physical Chemistry C, 2013, 117(6): 2600-2607.

    [42] [42] JABEEN U, SHAH S M, HUSSAIN N, et al. Synthesis, characterization, band gap tuning and applications of Cd-doped ZnS nanoparticles in hybrid solar cells[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2016, 325: 29-38.

    [43] [43] WRFEL U, CUEVAS A, WRFEL P. Charge carrier separation in solar cells[J]. IEEE Journal of Photovoltaics, 2015, 5(1): 461-469.

    [44] [44] ALIAGHAYEE M. Optimization of the perovskite solar cell design with layer thickness engineering for improving the photovoltaic response using SCAPS-1D[J]. Journal of Electronic Materials, 2023, 52(4): 2475-2491.

    [45] [45] LI Y T, WEI L, ZHANG R Z, et al. Annealing effect on Sb2S3-TiO2 nanostructures for solar cell applications[J]. Nanoscale Research Letters, 2013, 8(1): 89.

    [46] [46] SPALATU N, HIIE J, KAUPMEES R, et al. Postdeposition processing of SnS thin films and solar cells: prospective strategy to obtain large, sintered, and doped SnS grains by recrystallization in the presence of a metal halide flux[J]. ACS Applied Materials & Interfaces, 2019, 11(19): 17539-17554.

    [48] [48] NAKKA L, CHENG Y H, ABERLE A G, et al. Analytical review of spiro-OMeTAD hole transport materials: paths toward stable and efficient perovskite solar cells[J]. Advanced Energy and Sustainability Research, 2022, 3(8): 2200045.

    [49] [49] WANG S B, SUN W H, ZHANG M J, et al. Strong electron acceptor additive based spiro-OMeTAD for high-performance and hysteresis-less planar perovskite solar cells[J]. RSC Advances, 2020, 10(64): 38736-38745.

    [50] [50] CHEN D Y, TSENG W H, LIANG S P, et al. Application of F4TCNQ doped spiro-MeOTAD in high performance solid state dye sensitized solar cells[J]. Physical Chemistry Chemical Physics, 2012, 14(33): 11689-11694.

    [51] [51] REN G H, HAN W B, DENG Y Y, et al. Strategies of modifying spiro-OMeTAD materials for perovskite solar cells: a review[J]. Journal of Materials Chemistry A, 2021, 9(8): 4589-4625.

    [54] [54] VIDAL J, LANY S, D’AVEZAC M, et al. Band-structure, optical properties, and defect physics of the photovoltaic semiconductor SnS[J]. Applied Physics Letters, 2012, 100(3): 032104.

    Tools

    Get Citation

    Copy Citation Text

    TANG Huazhu, XIAO Qingquan, FU Shasha, XIE Quan. Simulation on ZnS/SnS Solar Cells with Spiro-OMeTAD as Hole Transport Layer[J]. Journal of Synthetic Crystals, 2024, 53(8): 1394

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Mar. 12, 2024

    Accepted: --

    Published Online: Dec. 3, 2024

    The Author Email: Qingquan XIAO (qqxiao@gzu.edu.cn)

    DOI:

    CSTR:32186.14.

    Topics